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Abstract

We present a theoretical study of the charging spectra in natural and artificial atoms. We apply a model electrostatic
potential created by a homogenously charged sphere. This model potential allows for a continuous passage from the Coulomb
potential of the nucleus to parabolic confinement potential of quantum dots. We consider electron systems with N =1,...,10
electrons with the use of the Hartree—Fock method. We discuss the qualitative similarities and differences between the

chemical potential spectrum of electron systems bound to nucleus and confined in quantum dots.
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1. Introduction

The three-dimensional confinement of electrons in
semiconductor quantum dots [1] results in a discrete
atomic-like quantization of energy levels. For this rea-
son the electron systems in quantum dots are called
artificial atoms [2].

Besides the discrete energy spectrum the artificial
and natural atoms exhibit similar capability of binding
the many-electron systems. The existence of a stable
N-electron atom (or ion) is possible if the chemical
potential of N-electron system, defined as uy = Ey —
Ey_y, where Ey is the N-electron ground state en-
ergy, does not exceed the continuum threshold energy.
Absolute value of uy is equal to the energy released
when an additional electron is bound to the atom
(or ion). For natural atoms the continuum threshold

* Corresponding  author. Tel.: +4812-6172974; fax: +4812-
6340010.
E-mail address: bszafran@agh.edu.pl (B. Szafran).

is determined by the minimal energy of an unbound
electron state, while for artificial atoms it can be iden-
tified with the Fermi energy of the electron reservoir
(electrode) which is the source of electrons. Basic
experiments testing the properties of natural and arti-
ficial atoms consist in measurement of single-electron
charging, i.e. in a direct or indirect determination of
the chemical potentials. The absolute values of chem-
ical potential of natural atoms (and ions) define the
ionization energy, which is measured in photoioniza-
tion processes. The single-electron charging of quan-
tum dots is observed in transport [3] or capacitance [4]
spectroscopy. The ionization energies of natural atoms
exhibit a distinct shell structure. In quantum dots
the shell filling can be observed [5,6] if the energy
spacings between the single-electron energy levels are
at least of the order of electron—electron interaction
energy, i.e. if the size of the dot is small enough.
The binding of electrons in natural atoms is due
to the Coulomb attraction by the nucleus. The poten-
tial that binds the excess charge carriers in quantum
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dots is called a confinement potential. The confine-
ment potential in quantum dots may result from var-
ious physical effects and posses different symmetry
and profile in different nanostructures [1,3,7]. How-
ever, in most of calculations the parabolic potential
[8—16] is used. The aim of the present study is to in-
vestigate the charging spectra determined by chemical
potentials, for natural atoms (and ions) as well as for
artificial atoms with parabolic confinement potential.
This investigation provides a comparative study of the
fundamental property of natural and artificial atoms,
namely their capability of binding the charge carri-
ers. For this purpose, we use a spherically symmetric
model of the confinement potential which allows for
a smooth passage from the Coulomb to parabolic po-
tential [17]. Most of the quantum dots are flat [1,3,7],
so the spherical symmetry of these nanostructures is
rather a rare feature. Nevertheless, quantum dots with
nearly spherical shape are produced [7] as nanocrys-
tals in an organic or insulating matrix.

The study of the charging spectra requires the
few-electron Schrodinger equation to be solved. The
problem of few-electron system confined in quan-
tum dots can be treated by the Hartree—Fock method
[8-11,18-20], exact diagonalization schemes [12,21,
13—15] or density functional approach [16,22-24]. In
this paper, we use the Hartree—Fock method, which
allows for the description of the charging spectra and
shell filling effects in quantum dots [19,20]. These
effects appear for quantum dots with intermediate and
small sizes. In the case of these dots the Hartree—Fock
method works with a reliable precision, although for
larger structures it can predict erroneous ground-state
symmetry [15]. The HF is also known [25] to repro-
duce with a high precision the ionization energies of
natural atoms and ions.

This paper is organized as follows: in Section 2 we
present the model confinement potential, the solutions
of one-electron and describe the method of solution of
the few-electron problem, the results and discussion
are given in the Section 3, Section 4 provides conclu-
sion and summary.

2. Theory

The study which is the aim of the present paper re-
quires a model confinement potential flexible enough

to reproduce the Coulomb potential of the nucleus as
well as the parabolic confinement potential of quantum
dots. Moreover, this model should allow for a con-
tinuous transition between the two ideal limit cases.
The potential which fulfills these requirements is the
spherically symmetric electrostatic potential created
by a charge spread homogenously over the volume of
a sphere

177 3Z
ERi};—EE fOrr<R,
Vir)= 7 (1)
—— forr > R,
r

where R is the radius of the sphere and Z is its charge.
In formula (1) and in the rest of the paper we use the
atomic units, i.e. we use the Bohr radius as the distance
unit and the Hartree unit for the energy. Potential (1)
is the electrostatic potential of positive background
charge. For semiconductor quantum dots this inter-
pretation should be taken with caution, since there is
no positive background in these structures. The quan-
tum dots confine the conduction band excess electrons.
Therefore, they are not neutral, but negatively charged.
Two-dimensional version of potential (1) has been
used [26] as a model confinement potential of disk-like
quantum dots. Bielinska-Waz et al. [27] have studied
the two-electron system in a spherically-symmetric su-
perposition of Coulomb and parabolic potentials.

Let us look at the shape of potential (1). The thick
solid lines in Fig. 1 show the confinement potential
(1) for R =0.5 and R = 1. Here, and in the rest of
the paper we take Z = 10, which corresponds to the
atom of neon and its ions. The dotted line presents the
Coulomb potential V. = —10/r. The thin vertical lines
show the surface of the charged sphere for R = 0.5
and 1. For finite values of R potential (1) does not
possess a singularity at the origin, it is parabolic in-
side the sphere (» < R) and reduces to Coulomb po-
tential in the outside (» > R). The broken lines show
the one-electron ground-state radial probability densi-
ties (#2|y(r)|?) for R=0.5 and R = 1. The probability
densities were obtained by solving the one-electron
Schrodinger equation with a finite-difference method.
The broken curves were shifted by an arbitrary con-
stant for aesthetic reasons. When the radius of the
sphere increases, the probability of finding the parti-
cle outside the sphere decreases (it is 28% for R=10.5
and 12% for R =1, respectively). This means that for
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Fig. 1. Confinement potential [Eq. (1)] for Z =10, R = 0.5 and
R =1 (solid lines) and the Coulomb potential (—10/r) (dotted
line). The single electron-ground state radial probability density
(2 |y(#)|?) for R=0.5 and R = 1, shifted by an arbitrary constant
(broken lines). The vertical lines mark the surface radii of the
two spheres. The quantities of » and V' (r) are expressed in atomic
units.

sufficiently large radius of the sphere the electron feels
only the parabolic part of the confinement potential.
This effect occurs also for excited-state wave functions
and makes the model potential (1) a suitable one for
the purpose of the present study. The transition from
the Coulomb potential to the harmonic confinement
can be performed by tuning the value of the radius of
the charged sphere R.

The evolution of the one-electron energy spectrum
with R is displayed in Fig. 2. We use the standard
atomic notation and display 1s,2s,3s,2p,3p, and 3d
energy levels. For R = 0 the energy spectrum is the
hydrogen-like spectrum of Ne’" ion. When R in-
creases from zero, all the energy levels increase. This
increase is the strongest for the states of s symmetry,
whose wave functions do not vanish at the origin. The
wave functions corresponding to states with non-zero
angular momentum react with a certain delay at the
change of the potential near the origin. This results
in lifting the degeneracy of 2s,2p as well as 3s,3p,3d
levels of hydrogen-like ion. The inset of Fig. 2 shows
the same energy levels for larger values of R. We
see that in the large R limit the spacings between the
energy levels become constant. Moreover, the first
excited state is of p symmetry, the second excited

energy [atomic units]

R [atomic units]

Fig. 2. One-electron energy spectrum for potential (1) as function
of the radius of the charged sphere (R). The solid lines show the s
energy levels, broken lines show the p levels and dotted line show
the 3d level. The inset displays the spectrum for larger values of
R. The atomic units are used.

state is composed of degenerate 2s and 3d states. In
this way, the hydrogen energy spectrum evolves into
the harmonic oscillator spectrum when R is increased.

In order to determine the charging spectrum of natu-
ral and artificial atoms we have to solve the N-electron
Schrodinger equation for the ground state. The Hamil-
tonian of the system reads

v Al
H= ——L+VE)+ Y — . 2
E;( S V) jZJ) 2)

The N-electron ground state is determined with
the spin-unrestricted Hartree—Fock method. The
one-electron trial wave functions are developed in the
Gaussian basis

J ii+ih+iz<1
k, TN 2
) =D D e A exp(—ayr), (3)
J=1 1iy,iz,i3=0

where s stands for the value of the z-component of
the electron spin, & numbers the orbital for a given
S, cﬁ’;m j are linear variational parameters, «; are the
nonlinear variational parameters, and J is the number
of nonlinear parameters used. Basis (3) allows for
construction of s and p symmetry one-electron wave
functions, which is sufficient for the description of the

ground states with NV up to 10.



526 B. Szafran et al. | Physica E 18 (2003) 523529

In the present calculations we apply J = 12 nonlin-
ear variational parameters. Gaussian basis (3) cannot
reproduce exactly the hydrogen-atom wave functions,
but it reproduces exactly the lowest harmonic oscilla-
tor eigenfunctions. Therefore, the convergence of the
total energy estimates with respect to the size of the
basis is faster for non-zero R values. For J = 12 basis
(3) contains 48 elements and yields —128.518 for the
total ground-state energy of neutral Ne atom, while
the exact HF result is —128.547 [25]. We have es-
timated that the ground state energy of the artificial
Ne with R =2 is determined with a precision of 1073
atomic units.

3. Results and discussion

Fig. 3 shows the calculated chemical potentials for
the systems with N = 1,..., 10 electrons as functions
of the radius of the charge sphere R. The values
for R = 0 correspond to the ionization energies of
Ne ions. These ionization energies form two groups

chemical potential [atomic units]

-50 I

0 1 2
R [atomic units]

Fig. 3. Evolution of the charging spectrum when passing from
natural to artificial atoms. Chemical potentials uy for N=1,...,10.
The atomic units are used.

with distinctly different values. The energy needed to
remove 1s electron from Ne®* (4E = —p1,) and Ne’*
(4E=—u, ) ions is much larger than the ionization en-
ergies for 2s and 2p valence electrons of less charged
ions. This results from the fact that in the natural ions
the binding energies of electrons from different shells
are of different orders of magnitude. The chemical
potentials grow when R increases, which is related
to analogous dependence of the single-electron en-
ergy levels presented in Fig. 2. The first and second
electrons occupy 1s level, which reacts more rapidly
on the change of the potential near the origin than 2s
and 2p energy levels. In consequence, the chemical
potentials of one and two-electron systems increase
much faster with R than the chemical potentials of
systems containing three to ten electrons. For large
values of R the difference between the ionization
energies diminishes. We note, that in particular the
difference between pu, and p; is decreased. This dif-
ference can be interpreted as the electron—electron
interaction energy in the two electron system. The
decrease of the electron—electron interaction energy
results from increase of the system size when R is
increased. The spin-orbital configurations given at the
right-hand side of Fig. 4 are the final ones, i.e. they
do not change any more as R increases further.

A closer inspection of the chemical potentials of
electron-systems with three to ten electrons exhibits
characteristic deviations from monotonous depen-
dence for values of R from 0 to about 0.3. Fig. 4 shows
this interesting aspect of our results. We remind, that
for R = 0 the results correspond to the ionization en-
ergies of natural Ne ions. The open circles mark the
experimental data for these quantities. A look at the
differences between the adjacent chemical potentials
defined as addition energy Ay = uyy1 — py reveals
the shell-filling mechanism in natural ions. This quan-
tity is particularly large for N which fills a shell or a
subshell. For zero radius of the charge sphere 44 and
A7 are larger than the other addition energies. This
is because the fourth electron fills the 2s shell and
because the seven-electron system corresponds to a
half-filled 2p shell, in which all the three electrons
posses parallel spins. The relatively large value of
A7 is results from the exchange interaction, and is a
signature of the Hund rule.

In Fig. 4 the orbital configurations of N-electron
system are given below the line corresponding to
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Fig. 4. Zoom of the upper left fragment of Fig. 3. The ground
state transformations in N =3,..., 10 electron systems. The orbital
configuration of valence electrons in the N-electron ground state
is given under the line corresponding to py (in all the systems
the 1s level is doubly occupied). The value of the total spin
z-component in /2 units is given in parentheses next to the orbital
configuration. The up (down) arrows show the cusps of py line
corresponding to the ground-state transformation of N (N — 1)
electron system. The open circles for R =0 mark the experimental
values of the ionization energies of Ne ions.

uy. For each orbital configuration the ground state
corresponds to the maximal allowed value of the
total spin. The values of the total spin z-component
are given (in /2 units) in parentheses after the
specification of the orbital configuration. In all the
systems presented in Fig. 4, the 1s energy level is
doubly occupied, and this information is omitted in
the figure. When R increases from zero, the 2s en-
ergy level grows faster than the 2p level (c.f. Fig.
2). In consequence for certain radii of the sphere the
ground-state is degenerate, i.e., there are two differ-
ent spin-orbital configurations corresponding to the
same ground-state energy. A change of R from the
values corresponding to this degeneracy results in
the changes of the electronic spin-orbital configu-
rations of the ground state. The transformations of
the ground state symmetry of N-electron system are

accompanied by cusps of chemical potentials py
and gy as functions of R. The cusps on py lines
are marked by arrows pointed up and the cusps on
Un+1 lines are marked by arrows pointing down. In
consequence of these transformations the 2s shell
is left empty in electron systems containing up to 8
electrons. In three- and nine-electron systems there
appears a single ground-state transformation when
one of the electrons from the 2s shell passes to 2p
shell. In the systems with four to eight electrons the
2s electrons pass to 2p shell one by one. Therefore,
for these systems there appear two transformations of
the ground state. The ones which appear for smaller
values of R will be referred to as ‘first’ and the ones
appearing for larger values of R will be referred to as
‘second’. The ground state configuration of ten elec-
tron system remains unchanged when R is increased.

The exchange interaction has a visible influence
on the values of the critical radii which induce the
ground-state transformations. The first transforma-
tions for N = 4,5 and 6 increase the spin state of the
system and the values of R corresponding to these
transformations are the smallest, because these trans-
formations are favored by the exchange interaction.
The second transformations for N = 6,7 and 8 reduce
the value of the spin, and the corresponding R values
are relatively large, since the exchange interaction
inhibits these transformations. The other transforma-
tions leave the spin-state unchanged.

Fig. 5 shows the chemical potential spectrum for
values of R between 1 and 2. This spectrum is quali-
tatively similar to that of harmonic oscillator confine-
ment potential. The electrons fill the subsequent shells
1s, 2p and 2s. Certain addition energies are larger than
the others in a characteristic manner. Namely, the large
values of 4, and Ag are related to the filling of 1s and
2p shell, respectively. Large value of 45 is a signature
of the Hund rule, i.e. half-filling of the 2p shell.

In the harmonic-oscillator limit the shell-filling
mechanism is similar to that in the natural atom: the
electrons occupy subsequent shells, in each case the
ground state corresponds to maximum value of
the total spin. However, the order of occupied shells
is different in natural and artificial atoms, which for
values of N < 10 studied in the present paper can
be explained by the order of single-electron energy
levels. The single-electron spectrum for R = 0 ex-
hibits the degeneracy of 2s and 2p energy levels.
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Fig. 5. Zoom of the upper right fragment of Fig. 3. The orbital
configurations and the values of z-component of the total spin are
given in #/2 units.

This degeneracy is lifted in few-electron systems, and
the electrons first occupy 2s shell and next the 2p
energy level. In the limit of large values of R the 2s
energy level is degenerate with the 3d energy level.
We have performed additional calculations with basis
extended to cover the d symmetry. We have verified
in this way that the 9th and 10th electrons occupy
the 2s shell, and 3d shell is left empty in the ground
state of nine- and ten-electron systems. In the case of
both natural and artificial atoms the electrons occupy
this of degenerate energy levels which corresponds to
lower angular momentum.

In the evolution of the charging spectrum from nat-
ural to artificial atoms we have found a region when
the regular shell-filling mechanism is broken, i.e. the
range of R in which the electrons occupy both 2s and
2p energy level while none of these shells is com-
pletely filled (c.f. Fig. 4). These states which violate
the Hund rule, appear in 4-8 electron systems in the
range of R between the two ground-state transforma-
tions.

4. Conclusion and Summary

We have performed a theoretical study of the evolu-
tion of the charging spectra when passing from natural
to artificial atoms. We have used a model confinement
potential of a positively charged sphere which allows
for a smooth transition from the Coulomb to parabolic
potential. We have shown that the ground-state of
few-electron systems undergoes several ground-state
transformations associated with a change of the sym-
metry when the potential is changed from Coulomb to
parabolic. The order of these transformations is in a
visible way affected by the spin effects. We have also
shown that—although the natural and artificial atoms
exhibit a similar shell filling mechanism—the charg-
ing spectrum of the artificial atoms is affected by the
shell structure in a much smaller extent than that of
natural atoms. We have found that the simple shell
filling mechanism of natural and artificial atoms is
violated in the size-regime in which the ground-state
transformations appear.
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