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Electron–electron correlation in quantum dots
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Abstract

The problem of correlation has been studied for two-electron systems in semiconductor quantum dots with
harmonic-oscillator con�nement potentials of both the spherical and cylindrical symmetry. The eigenvalue problems have
been solved by the iterative extraction-orthogonalization method, which provides the exact results for the harmonic-oscillator
potential with arbitrary frequency. It is shown that — on the contrary to the previous results — in the absence of external
magnetic �eld, the ground state is the spin singlet for quantum dots of arbitrary size, i.e., a singlet–triplet spontaneous “phase
transition” does not occur. We have performed the comparative calculations using the Hartree–Fock method and shown that
the previously predicted singlet–triplet “phase transition” results from the neglect of the electron–electron correlation. We
have found that for su�ciently large quantum dots the singlet ground state becomes degenerate with the �rst excited triplet
state and pair-correlation functions for these states are almost identical. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bound atom-like states (arti�cial atoms) [1,2] can
be created in a system of excess electrons con�ned
in a semiconductor quantum dot if the “quantum
capacity” [3] of the dot is su�ciently large. The
properties of few-electron arti�cial atoms have been
investigated in both the experimental [4–7] and the-
oretical papers [3,8–17]. The excess electrons in
quantum dots are subjected to con�nement potentials,
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which result from either heterojunction band o�sets
or potentials applied to external microelectrodes. In
the theoretical papers, the con�nement potentials are
usually approximated by the following two model
potentials: harmonic-oscillator potential and rectan-
gular potential well. In our recent papers [3,17], we
have studied the properties of few-electron [3] and
many-electron [17] arti�cial atoms with the con�ne-
ment potential assumed to be the spherical potential
well of �nite depth.
In the majority of the papers on quantum dots (for

a review, see Ref. [18]), the con�nement potential
was assumed in the form of the two-dimensional
harmonic-oscillator potential. An application of this

1386-9477/00/$ - see front matter ? 2000 Elsevier Science B.V. All rights reserved.
PII: S 1386 -9477(99)00039 -9



186 B. Szafran et al. = Physica E 5 (2000) 185–195

potential [8,11,14–16] to an interpretation of experi-
mental data for cylindrical quantum dots is based on
the assumption that the electrons are “frozen” in the
ground state, which results from the size quantization
of their motion in the growth (z) direction. However,
this assumption neglects a �nite extent of the elec-
tronic wave function in the z direction and requires
an approximate treatment of the three-dimensional
electron–electron Coulumb interaction [10]. In the
present paper, in order to avoid these drawbacks we
apply the three-dimensional model of the quantum dot.
The many-electron system in the three-dimensional
anisotropic harmonic-oscillator potential was studied
with the use of the Hartree–Fock (HF) method by
Fujito et al. [12], who argued that the many-electron
ground state is completely spin polarized for large
quantum dots. In particular, the results [12] suggest
that for the two electrons a spontaneous singlet-triplet
“phase transition” appears for some critical size of the
dot. Such phase transition would be an analog to the
density-induced para-ferromagnetic phase transition
studied by the Hartree–Fock [22,23] and Monte Carlo
[24,25] methods for the electron gas with the uniform
neutralizing background. The problem of two elec-
trons in a spherically symmetric harmonic-oscillator
potential was studied in papers [19–21]. For a par-
ticular set of oscillator frequencies the analytical so-
lutions were found [19]. The singlet–triplet splitting
between the two-electron energy levels was calcu-
lated [21] for the �xed oscillator frequency != 1

2 ,
which admits the analytical solutions [19]. However,
the authors [21] did not study the singlet–triplet split-
ting in the weak-con�nement regime, i.e., for large
quantum dots, for which the density-induced phase
transition was supposed [12].
The purpose of the present paper is to perform a

systematic study of the in
uence of electron–electron
correlation on a presumed singlet–triplet phase tran-
sition for quantum dots of arbitrary size. We assume
the three-dimensional con�nement of the electrons in
the quantum dot and employ the harmonic-oscillator
con�nement potentials of both the spherical and cylin-
drical symmetry. We show that the previously pre-
dicted triplet ground state results from the omission
of the correlation in the HF approximation. We have
found a new property of two-electron quantum dots,
namely, we predict that in large quantum dots the sin-
glet and triplet states are nearly degenerate, i.e., their

energy levels lie very close, but do not cross each
other.
The paper is organized as follows: Section 2 con-

sists of a theoretical model and basic analytical results,
the numerical results are presented in Section 3, the
discussion and conclusions are in Section 4, and the
summary is in Section 5.

2. Theory

We consider the two-electron systems in quantum
dots with the con�nement potentials assumed to be
the harmonic-oscillator potentials of either the spher-
ical or cylindrical symmetry. The basic properties of
the two electrons con�ned in the spherically sym-
metric harmonic-oscillator potential have been dis-
cussed in papers [19,20]. We present here in more
detail the problem of the electronic pair con�ned in the
anisotropic harmonic-oscillator potential of the cylin-
drical symmetry. The Hamiltonian of this system has
the form

H=− ˜2
2me

(32
1 +32

2 ) +
me!2x
2
(x21 + x22 + y21 + y22)

+
me!2z
2
(z21 + z22) +

�e2

�s|r1 − r2| ; (1)

where me is the band electron mass, !x and !z

are the anisotropic harmonic-oscillator frequencies,
� = 1=4��0; �0 is the permittivity of vacuum, and
�s is the static dielectric constant. We introduce the
center-of-mass position vector R= (X; Y; Z) = (r1 +
r2)=2, relative-position vector r = (x; y; z) = r1 − r2,
the donor rydberg RD = me�2e4=2˜2�2s as the unit of
energy, and the donor Bohr radius aD = �s˜2=me�e2
as the unit of length. Then, Hamiltonian (1) takes on
the form

H= HCM + Hrel; (2)

where

HCM =− 1
23

2
R + 2


2
x(X

2 + Y 2) + 2
2z Z
2 (3)

is the center-of-mass Hamiltonian and

Hrel =−232
r +


2x
2
�2 +


2z
2
z2 +

2
r

(4)

is the relative-motion Hamiltonian. In Eqs. (3) and
(4), �2 = x2 + y2; r =

√
�2 + z2; 
x = ˜!x=2RD,

and 
z = ˜!z=2RD. Since Hamiltonian (4) commutes
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with the operator Lopz of z-component of angular mo-
mentum, we can project it onto a subspace of states
with the de�nite eigenvalues of Lopz and write it down
in the cylindrical coordinates. We obtain

H = 2
(
− 92
9�2 −

1
�
9
9� +

M 2

�2
− 92
9z2 +


2x
4
�2

+

2z
4
z2 +

1
r

)
; (5)

where M is the quantum number of z-component of
angular momentum.
For the three-dimensional spherical harmonic-oscil-

lator potential, the corresponding relative-motion
Hamiltonian projected onto the subspace of states
with the de�nite angular momentum has the form

Hspher = 2
(
− d2

dr2
− 2

r
d
dr
+

L(L+ 1)
r2

+

2

4
r2 +

1
r

)
;

(6)

where r = (x2 + y2 + z2)1=2, L is the angular momen-
tum quantum number, 
= ˜!=2RD, and ! is the fre-
quency of the isotropic harmonic oscillator. If we omit
the electron–electron interaction, the energy eigenval-
ues of relative-motion Hamiltonians (5) and (6) are
given by

E0nMnz = 2
x(2n+ |M |+ 1) + 
z(2nz + 1) (7)

for Hamiltonian (5) and

E0nL = 
(4n+ 2L+ 3) (8)

for Hamiltonian (6), where n is the radial quantum
number and nz is the oscillator quantum number.
Let us consider the basic physical properties of

the two-electron system in the harmonic-oscillator
potential. We are interested in an in
uence of the
electron–electron correlation on the lowest-energy
eigenstates. Therefore, we will only discuss the
eigenvalue problems for the relative-motion Hamil-
tonians (5) and (6), since the energy spectrum of the
center-of-mass Hamiltonian (3) is independent of the
electron–electron interaction. Moreover, due to the
symmetry of the center-of-mass Hamiltonian (3) (and
its spherically symmetric analog), the wave function
describing the center-of-mass motion is symmetric
against the interchange of the electrons and both the
singlet and triplet states of the lowest energy are as-
sociated with the ground state of the center-of-mass
motion. Wave function 	(r; �1; �2), describing the

relative motion of electrons, can be factorized as
follows: 	(r; �1; �2) =  (r)�(�1; �2), where  (r) is
the eigenfunction of Hamiltonian (5) [or Hamilto-
nian (6) for the isotropic harmonic oscillator] and
�(�1; �2) is the spin wave function of spin variables
�1 and �2. Two-electron wave function 	(r; �1; �2)
has to be antisymmetric with respect to the exchange
of electrons. For the two electrons, the total spin can
be either 0 or 1 (in units ˜), i.e., the spin states � are
either the antisymmetric singlet or symmetric triplet
states, respectively. The symmetry of spatial wave
function  (r) with respect to the electron permutation
is determined by the quantum numbers M and L for
Hamiltonians (5) and (6), respectively. In particular,
the states with M = 0 or L= 0 (S-like states) are
symmetric against the exchange of electrons, i.e., they
are the spin singlet states, and the states with M = 1
or L= 1 (P-like states) are antisymmetric against the
exchange of electrons, i.e., they are the spin-triplet
states. For the states with M 6= 0 and L¿ 0, the
positive de�nite operators M 2=�2 in Hamiltonian (5)
and L(L+ 1)=r2 in Hamiltonian (6) yield positive
contributions to the energy of the considered states.
According to the comparison theorem [26], the energy
levels of the states with M 6= 0 and L¿ 0 are shifted
upwards with respect to those of the corresponding
states with M = 0 and L= 0. We conclude that for
both the harmonic-oscillator con�nement potentials
the two-electron ground state is the singlet state with
the energy EsingletGS , which is lower than the minimum
energy Etripletmin of the �rst excited triplet state, i.e.,

EsingletGS ¡Etripletmin : (9)

This inequality is valid for the lowest energy levels
only. The order of the higher energy levels can be
di�erent.

3. Results

We have solved the eigenvalue problems for the
following lowest energy states: the spin-singlet states,
that correspond to the orbital states with M = 0 for
Hamiltonian (5) and L= 0 for Hamiltonian (6), and
the spin-triplet states, that correspond to the orbital
states with M = 1 for Hamiltonian (5) and L= 1 for
Hamiltonian (6). We remind that the singlet and triplet
states considered in the present paper are associated
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Fig. 1. The lowest singlet (a) and triplet (b) energy levels of two electrons in spherically symmetric harmonic-oscillator potential as
functions of characteristic length l = 
−1=2. Solid curves show the exact results obtained by the iterative extraction-orthogonalization
method and dashed curves the results of the unrestricted HF method.

with the same quantum state of the center-of-mass
Hamiltonian.
In order to �nd exact solutions, which are valid for

arbitrary con�nement potential, we have applied the
modi�ed version of the iterative extraction-orthogonal-
ization method [27,28]. Here, we brie
y discuss the
present implementation of this method to the eigen-
value problem dependent on two variables. The wave
function is determined on a two-dimensional grid
(i��; j�z), where ��= �max=N; �z = zmax=N; i
and j are integers, i ∈ [0; N ], and j ∈ [− N; N ].
We have checked that the su�ciently high pre-
cision for the purposes of the present work is
achieved if we take on the number of mesh points,
which corresponds to N = 200. The discretized
form of Hamiltonian H is obtained by replac-
ing the derivatives in the kinetic-energy opera-
tor by their �nite di�erence approximations. We
put the following boundary conditions: the wave
function has to vanish at �= �max and |z|= zmax.

The values of �max and zmax, which determine
the size of the computational box, are optimized
to give the lowest energy eigenvalue. The itera-
tion procedure runs as follows: in the kth itera-
tion step, the values  k

ij of the wave function on
the mesh points are evaluated according to the
formula

 k
ij = exp(−�H) k−1

ij ' (1− �H) k−1
ij : (10)

One can prove [28] that – independently of starting
values – the above iteration procedure converges to
the exact wave function, which corresponds to the
lowest energy eigenstate of the required symmetry,
if the iteration parameter � is small enough. After
each iteration step, the new wave function is nor-
malized and the Rayleigh quotient 〈 |H | 〉=〈 | 〉 is
evaluated. If the convergence is reached, the value of
the Rayleigh quotient provides a very accurate esti-
mate of the energy eigenvalue, which allows us to ob-
tain the results with the required precision, i.e., these
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Fig. 2. Singlet–triplet splitting for the two-electron system in isotropic harmonic-oscillator potential as a function of quantum-dot size l.
Solid (dashed) curves correspond to spin-singlet (triplet) states. Inset: the corresponding results obtained by the HF method.

numerical results can be regarded to be exact. We have
solved the Schr�odinger equation with Hamiltonian (5)
by this method. When solving the radial Schr�odinger
equation with Hamiltonian (6) the one-dimensional
grid has been applied. In order to study the in
u-
ence of electron–electron correlation on the proper-
ties of the two-electron quantum dots, we have also
performed the comparative calculations by the unre-
stricted HF method with the use of the Gaussian basis
of both the spherical [17] and cylindrical [29] symme-
try. The HF approximation neglects the correlation.
Therefore, a comparison of the results obtained by the
exact method and HF method allows us to draw con-
clusions about a contribution of the correlation to the
results.
Throughout the present paper, we take on the values

RD = 5:8 meV and aD = 9:9 nm, which correspond to
GaAs quantum dots and are the same as in Ref. [12].
Fig. 1 shows the lowest energy levels associated with
the spin-singlet (a) and spin-triplet (b) states of Hamil-
tonian (1) with the isotropic harmonic-oscillator po-

tential. The characteristic length l= 
−1=2 determines
the size of the quantum dot. We obtain a very good
agreement of the HF results with the exact results
for quantum dots of small and intermediate size, i.e.,
in the strong- and intermediate-con�nement regimes,
respectively. Small deviations of the HF results from
the exact results are visible only for large quantum
dots, i.e., in the weak-con�nement regime. We note
that the deviations for the triplet states are smaller
than those for the singlet states. A direct comparison
of the singlet and triplet energy levels is depicted in
Fig. 2, which shows that – for all values of l – the
energy level of the singlet state is located below the
lowest energy level of the triplet state. This is a nu-
merical con�rmation of conclusion (9) and means that
– independently of the dot size – the spin-singlet state
is the ground state of the electron pair con�ned in the
quantum dot with the isotropic harmonic-oscillator
potential. Fig. 2 also shows that both the states be-
come degenerate for the dots of large size (l¿160
nm). For comparison, the singlet–triplet splitting
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Fig. 3. Probability density | (r)|2 (equal to the pair-correlation function) in arbitrary units for singlet (solid curves) and triplet (dashed
curves) states of two electrons con�ned in the spherical harmonic-oscillator potential for l = 4:95 nm (a), 49.5 nm (b), and 156.5 nm (c).

obtained by the HF method is displayed in the inset
of Fig. 2. We see that for l¿50 nm the HF triplet
energy level is located below the corresponding sin-
glet energy level. This means that – in a contradiction
to the exact results – the HF approach leads to a
�ctitious singlet-triplet “phase transition”.
The numerical values of errors of the HF method

can be estimated from the results displayed in Fig. 1.
The di�erences between the HF and exact results for
l= 12:5 and 100 nm are equal to 0.41 and 0.13 meV,
respectively, for the singlet states (0.07 and 0.04 meV
for the triplet states). The corresponding relative errors
are 1.44% and 14.2% for the singlet (0.21% and 0.40%
for the triplet).

The electron–electron correlation can be studied
with the help of a pair-correlation function, which for
the electron pair in the harmonic-oscillator potential is
equal to [19] a two-electron probability density, i.e.,
| (r)|2. The results of the present numerical calcula-
tions of the two-electron probability density for the
singlet and triplet states are displayed in Fig. 3. The
cusp for the singlet state near r = 0 [Fig. 3(a)] is a
signature of a Coulomb hole, which results from the
coulombic electron–electron repulsion, and can also
be obtained from the analytical solution, which is valid
for r → 0 (cusp condition). If the dot size increases,
the probability densities of singlet and triplet states ap-
proach each other and coincide with themselves almost
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Fig. 4. Ground-state energy of singlet two-electron states in the anisotropic harmonic-oscillator potential with �xed lz = 
−1=2z = 4:95 nm
as a function of lx = 
−1=2x . Solid (dashed) curve shows the exact (Hartree–Fock) results.

exactly [Fig. 3(c)] in the weak-con�nement regime,
in which both the states are nearly degenerate.
The anisotropic harmonic-oscillator potential,

which can be used to a description of cylindrical
quantum dots, is characterized by two parameters 
x
and 
z [Eq. (4)]. We have performed the calculations
for several values of characteristic length lx = 
−1=2x

and a �xed value of lz = 
−1=2z . We have taken
lz = 4:95 nm in accordance with Ref. [12]. The calcu-
lated energy of the singlet state is depicted in Fig. 4.
Similarly as for the isotropic harmonic-oscillator
potential, the exact and HF results coincide with
themselves for small- and intermediate-size quantum
dots, and slightly di�er for large dots. For the triplet
states (not shown in Fig. 4), we obtain an almost per-
fect coincidence of the exact and HF results for the
dots of the size lx650 nm. The comparison of the
singlet and triplet energy levels is displayed in Fig.
5, which shows that – in accordance with inequality
(9) – the singlet energy level is located below the

lowest triplet level for the dots of arbitrary radial
extension. The singlet–triplet degeneracy is achieved
for the cylindrical quantum dots of smaller size than
for the spherical dots (cf. Figs. 2 and 5). Inset of Fig.
5 shows that the HF approach leads to the �ctitious
singlet–triplet “phase transition” at lx ' 25 nm.
For the anisotropic oscillator potential characterized

by lz = 4:95 nm and lx = 7 and 56 nm, the errors of the
HF approximation for the singlet states are estimated
to be 0.65 and 0.55 meV, respectively (0.12 and 0.08
meV for the triplet states). The corresponding relative
errors are 0.6% and 1.1% for the singlet (0.10% and
0.15% for the triplet).
Fig. 6 reports the calculated electron probability

density for cylindrical quantum dots in the plane z =
0 as a function of radius �. Again we see that the
probability densities of the singlet and triplet states
approach each other for the large dots [Fig. 6(c)] and
this e�ect is associated with the degeneracy of the
corresponding energy levels.
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Fig. 5. Singlet–triplet splitting for the two-electron system in anisotropic harmonic-oscillator potential as a function of quantum-dot radial
size lx for �xed lz = 4:95 nm. Solid (dashed) curves correspond to spin singlet (triplet) states. Inset: the corresponding results obtained
by the HF method.

4. Discussion and conclusions

The results of the present paper show that the
ground state of the two-electron quantum dot of arbi-
trary size is the spin-singlet state if the con�nement
potential is the harmonic-oscillator potential of the
spherical or cylindrical symmetry. For the consid-
ered systems, no singlet–triplet phase transition takes
place. This statement is supported by the analytical
proof given in Section 2 as well as numerical results
reported in Section 3. In the case of the anisotropic
harmonic-oscillator con�nement, our conclusion is in
contradiction with the results of Fujito et al. [12], who
used the HF method and obtained the spin-polarized
ground state for large quantum dots. However, the
results of Fujito et al. [12] agree with the present HF
results (cf. inset of Fig. 5). This shows that the HF
approximation leads to small systematic errors, which
are caused by the neglect of the electron–electron

correlation. These errors are usually smaller for the
triplet states than for the singlet states and slightly af-
fect the results for the large quantum dots, i.e., in the
weak-con�nement regime. We note that in this regime
all the calculated triplet–singlet energy di�erences are
very small. Nevertheless, the small systematic error of
the HF method can result in a �ctitious spin-polarized
ground state. On the other hand, the present results,
that are exact for the two-electron states only, do not
allow us to reject or con�rm a spin polarization of
the many-electron ground state. According to the HF
results [12], the N -electron ground state with N612
electrons is spin polarized for large enough quantum
dots. It is known that the HF method works better for
many-electron systems.
The electron pair in the spherical harmonic-oscillator

potential has been used [20] as a test system for
studying the applicability of the HF method and few
versions of the local spin density approximation.
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Fig. 6. Probability density | (�)|2 displayed in z = 0 plane in arbitrary units for singlet (solid curves) and triplet (dashed curves) states of
two electrons con�ned in anisotropic harmonic-oscillator potential with �xed lz = 4:95 nm and lx = 7 nm (a), 9.9 nm (b), and 49.5 nm (c).

Taut et al. [20] discussed the errors introduced by
these approximations in the weak-, intermediate-, and
strong-con�nement regimes. The conclusions of Ref.
[20] about the applicability of the HF method to the
isotropic harmonic-oscillator potential agree with our
conclusions.
In our previous paper [3] on the two- and

three-electron quantum dots we assumed the con-
�nement potential in the form of the spherically
symmetric potential well of �nite depth. We pre-
dicted [3] a “phase transitions” from the low-spin to
high-spin states if the radius of the dot was su�ciently
large. These results were obtained with the help of
the extended HF approach, which partially included

the electron–electron correlation. The estimated [3]
energy di�erences between the spin-polarized and
spin-unpolarized states were very small (of the order
of 0.01RD). There arises a question if these “phase
transitions” could result from a partial neglect of the
correlation. Unfortunately, for the electronic system
con�ned in the spherical potential well of �nite depth
it is impossible to separate out the center-of-mass
motion and the eigenvalue problem depends on more
than two variables. The problem [3] is more com-
plicated than those considered in the present paper
and the iterative extraction-orthogonalization method
cannot be applied to check the results of Ref. [3]. We
cannot exclude that the extended HF approach [3]
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also prefers the �ctitious spin-triplet ground state for
large quantum dots. Nevertheless, the calculated [3]
singlet and triplet energy levels lie in close proximity
to each other and may be treated as nearly degenerate.
Possible corrections to the results [3] would be very
small and do not remove this near degeneracy, which
determines the physical properties of the ground state
of two electrons in large quantum dots.
We note that – due to the singlet–triplet degeneracy

in large quantum dots – the presumed singlet–triplet
”phase transition” cannot be veri�ed experimentally in
the absence of external �elds. Such “phase transition”
could only be detected under application of an exter-
nal perturbation, e.g., a magnetic �eld, which lifts the
degeneracy and splits the energy levels.
According to the results shown in Section 3, the

pair-correlation function, which – for the systems
considered in the present paper – is equal to the
two-electron probability density, is nearly the same
for the degenerate singlet and triplet states, i.e., for
large quantum dots. This means that the in
uence of
the orbital angular momentum on the electron distri-
bution is suppressed in the weak-con�nement regime.
Therefore, for large quantum dots the singlet and
triplet states possess (nearly) the same energy and
(nearly) the same pair-correlation function.
In very large quantum dots, the electrons exhibit a

Wigner-type localization [10], i.e., they behave simi-
larly as classical point charges. This limit corresponds
to the completely correlated electrons and cannot be
obtained by the HF method. For the very large quan-
tum dot, the two-electron probability density exhibits
an enormous Coulomb hole in the vicinity of r = 0.
Therefore, the in
uence of the centrigual potential is
negligibly small and the singlet and triplet states be-
come degenerate. The HF method is less accurate for
the singlet than for the triplet states (cf. Ref. [9]), since
it neglects the vanishing two-electron probability den-
sity for the singlet states. The di�erent accuracy of the
HF method for both the states is responsible for the
�ctitious singlet–triplet “phase transition”.

5. Summary

We have shown that – in the absence of external
magnetic �eld – the ground state is the spin singlet for
the electron pair in the quantum dot of arbitrary size

for the harmonic-oscillator con�nement potentials of
spherical and cylindrical symmetry. We have found
that for large quantum dots (in the weak-con�nement
regime) the singlet and triplet states become degener-
ate with almost coinciding pair-correlation functions.
However, the lowest singlet energy level lies slightly
below the lowest triplet level. This close proximity
of singlet and triplet energy levels, when reproduced
without adequate computational accuracy, can lead to
a �ctitious singlet–triplet “phase transition”. The pre-
viously predicted spin polarization of the ground state
results from small systematic errors introduced by the
HF approximation, which slightly underestimates the
energy of the singlet states, but provides rather accu-
rate estimates for the triplet states. This leads to the
spin-triplet state to be preferred by the HF method
as the lowest energy state in the weak-con�nement
regime. The small error of the HF approach is a re-
sult of the neglected electron–electron correlation. It
can be noticeable for large quantum dots, i.e., for elec-
tron systems of low density. However, if we consider
the quantum state of the given symmetry, e.g., singlet
state, and if we are not interested in very subtle en-
ergy di�erences between the considered state and the
�rst excited triplet state, then the HF method is very
useful in determining the ground-state properties of
the arti�cial atoms. The results of the present paper
allow us to estimate the reliability of the HF method
when applied to the quantum dots. We have pointed
out that the HF approach provides reliable results for
the quantum dots of small and intermediate size, i.e.,
in the strong- and intermediate-con�nement regimes.
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(1998) 147.

[17] S. Bednarek, B. Szafran, J. Adamowski, Phys. Rev. B 59
(1999) 13036.

[18] N.F. Johnson, J. Phys.: Condens. Matter 7 (1995) 965.
[19] M. Taut, Phys. Rev. A 48 (1993) 3561.
[20] M. Taut, A. Ernst, H. Eschrig, J. Phys. B 31 (1998) 2689.
[21] M. Taut, A. Ernst, J. Phys. B 31 (1998) L35.
[22] F. Bloch, Z. Phys. 57 (1929) 545.
[23] J.C. Slater, Phys. Rev. 36 (1930) 57.
[24] D. Ceperley, Phys. Rev. B 18 (1978) 3126.
[25] D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45 (1980) 566.
[26] R.N. Hill, Phys. Rev. Lett. 38 (1977) 643.
[27] R. Koslo�, H. Tal-Ezer, Chem. Phys. Lett. 127 (1986) 223.
[28] D. Jovanovic, J.-P. Leburton, Phys. Rev. B 49 (1994) 7474.
[29] S. Bednarek, B. Szafran, J. Adamowski, Acta Phys. Pol. A

94 (1998) 555.


