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Abstract

Energy spectra of two- and three-electron systems con�ned in semiconductor quantum dots, i.e., arti�cial helium and
lithium atoms, are studied by the variational method under the assumption of the spherically symmetric con�nement potential
of �nite depth. It is shown that the electron pairs and triples can form bound states if the quantum ‘capacity’, V0R2, of the
quantum dot, is su�ciently large (V0 is the potential-well depth and R is the quantum-dot radius). The conditions of binding
have been determined for the ground and excited states. The binding energy and dipole transition energy have been calculated
for several QDs. It is found that the dipole transition energy for the one-, two-, and three-electron arti�cial atoms is nearly
independent of the number of electrons. ? 1999 Elsevier Science B.V. All rights reserved.

PACS: 73.20.Dx
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1. Introduction

Excess electrons introduced into a semiconductor
quantum dot (QD) are subjected to a three-dimensional
con�nement potential, which results from potential
barriers at the boundaries and=or the external volt-
age applied [1,38,39]. The depth and range of the
con�nement potential can be changed intentionally,
which yields an energy spectrum with the designed
properties. The QD with the con�ned electrons can be
treated as an arti�cial atom [2,3]. The QD nanocrys-
tals of nearly spherical shape embedded in an insu-
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lating matrix have been fabricated from the group IV
semiconductors [4,5] and from the semiconducting
compounds II–VI, III–V [6,40], I–VII [7,41], and
IV–VI [8].
Theoretical description of electron states in QDs

was a subject of papers [2,9–19]. The authors of these
papers assumed in�nitely deep con�nement poten-
tials, which possessed exclusively the bound states.
This was either the rectangular potential well of in-
�nite depth [9] or the parabolic potential [2,10–19].
The ground-state energy of few-electron QDs with
the con�nement potential of �nite depth was studied
by Fong et al. [20] with the help of the local-density
approximation. When using the con�nement potential
of in�nite depth, the following fundamental physical

1386-9477/99/$ – see front matter ? 1999 Elsevier Science B.V. All rights reserved.
PII: S 1386 -9477(98)00247 -1



2 B. Szafran et al. = Physica E 4 (1999) 1–10

problem arises: a continuum-energy threshold does
not exist and the excess electrons are always bound by
the con�nement potential, i.e., possess only discrete
energy levels. Therefore, the binding and dissociation
processes cannot be described. This problem can be
solved if we introduce the con�nement potential of �-
nite depth, which moreover much better describes the
real QD-nanostructure, since the potential con�ning
the electrons always possesses the �nite depth and
range. Moreover, the application of the �nite con�ne-
ment potential allows us to determine the quantum
‘capacity’ of the dot, i.e., to predict the number of
electrons, which can be added to a QD in a given
quantum state.
The subject of the present paper is closely connected

with the problem of electron states in porous silicon
[21,22]. It is suggested [21,22] that the emission of
visible light from the porous silicon results from the
electron and hole states con�ned in Si nanocrystals. It
was found [21,22] that the e�ective-mass model with
�nite barriers fairly well accounts for the properties
of porous silicon.
In the present work we investigate the possibility of

formation of bound states of two- and three-electron
systems con�ned in spherical QDs. The application
of the con�nement potential of �nite depth allows us
to give a clear physical interpretation for the binding
of electrons in the QD and to determine the quantum
‘capacity’ of the QD. Preliminary results for the two-
electron QDs were announced in Ref. [23]. Using the
�nite con�nement potential, we [24,25] demonstrated
that the excited states of D− donor centers can be
bound in spherical QDs.
The paper is organized as follows: the theoreti-

cal model is presented in Section 2, the problem of
electron–electron correlation is discussed in Section
3, the results of calculations are given in Section 4,
the conclusions and the discussion of an applicability
of the present results to a description of experiments
are contained in Section 5, and the results of the paper
are summarized in Section 6.

2. Theory

We consider a system of few excess electrons con-
�ned in a single spherical semiconductor QD, which
forms a potential-well region and is embedded in an

insulating material (potential-barrier region). The con-
�nement potential is assumed in a form of the spherical
potential well, i.e., V (r) = −V0 for r¡R and V (r) =
0 for r¿R, where R is the radius of the QD, V0 is
the depth of the potential well, and V0¿0. The energy
of the conduction-band minimum of the barrier mate-
rial is set equal to zero and taken as the reference en-
ergy. Such choice of the reference energy allows us to
separate the discrete energy levels of the electrons in
the QD, which result from the size quantization, from
the quasi-continuous energy of the conduction-band
electrons in the barrier region. In the e�ective mass
approximation, the Hamiltonian of the system of N
electrons in the QD has the form

H =
N∑

i=1
[−32

i + V (ri)] +
N∑

i=1

N∑

j¿i

2
rij

; (1)

where rij = |ri − rj|; ri are the position vectors of
electrons, the donor Rydberg RD = me�2e4=2˜2�2s
is the unit of energy, the donor Bohr radius aD =
�s˜2=me�e2 is the unit of length, � = 1=4��0, and �0
is the permittivity of vacuum. The changes of the
electron e�ective band mass me and static dielectric
constant �s at the QD boundary are neglected.
We have solved the eigenvalue problem for Hamil-

tonian (1) by the variational method with the trial
wave function, which is built from the wave functions
of one-electon states for the spherical potential well.
These one-electron wave functions have been taken on
as linear combinations of Slater-type orbitals, which
reproduce the subsequent one-electron energy levels
with a large accuracy [25]. Under the assumption of
the Russell–Saunders coupling, the total spin and to-
tal orbital angular momentum of the electrons are well
de�ned. The proposed trial wave function has the fol-
lowing form:

	I
�({�i}) =

∑

{ni}
c�{ni} �{ni}({�i}); (2)

where �i = (ri ; �i); {�i} = (�1; : : : ; �N ) denotes the
set of the position vectors ri and spin variables �i,
and c�{ni} are the linear variational parameters (i =
1; : : : ; N ). Basis wave functions  �{ni} in Eq. (2) are
proposed as properly symmetrized linear combina-
tions of Slater determinants, that are constructed from
the one-electron orbitals of the form

’�
nilm(r) = rni exp(−
�r)Ylm(�; �); (3)
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where 
� are the nonlinear variational parameters and
Ylm(�; �) are the spherical harmonics. In the present
calculations, the parameters {ni} = (n1; n2; n3) take on
the values ni = 0; : : : ; 12.
We consider the following two-electron states: (1s2)

1S, (1s1p) 1P, (1s1p) 3P, (1p2) 3P, (1p2) 1D, (1p2) 1S,
(1s1d) 1D, (1s1d) 3D, (1s2s) 1S, and (1s2s) 3S, and
three-electron states: (1s21p) 2P, (1s1p2) 4P, (1s21d)
2D, (1s22s) 2S, and (1s1p2) 2S. The symbols in paren-
theses denote the occupation of the one-electron or-
bitals, the capital letters S, P, and D correspond to the
total angular-momentum quantum numbers L = 0; 1;
and 2, respectively, and the superscripts outside the
parentheses – the total-spin multiplets. Below, we give
the two exemplary basis functions:

 �
n1n2 (�1; �2) =A[’�

n100(r1)�(�1)’
�
n200(r2)�(�2)]

−A[’�
n100(r1)�(�1)’

�
n200(r2)�(�2)]

(4)

for the two-electron state � = (1s2) 1S and

 �
n1n2n3 (�1; �2; �3)

=A[’�
n100(r1)�(�1)’

�
n200(r2)�(�2)’

�
n310(r3)�(�3)]

−A[’�
n100(r1)�(�1)’

�
n200(r2)�(�2)’

�
n310(r3)

×�(�3)] (5)

for the three-electron state � = (1s21p) 2P, where A
is the antisymmetrization operator, �(�) and �(�) are
the spinors. The basis wave functions for the other
considered states have been constructed in a similar
manner. We took on various numbers of terms in ex-
pansion (2), which ensured the necessary accuracy of
the calculations. The shortest expansion included 91
terms for two-electron state (1s2) 1S and the longest
– 364 terms for three-electron state (1s21p) 2P.

3. Electron–electron correlation

The exact wave function of the few-electron system
should take into account the electron–electron corre-
lation. The correlation can be included in a twofold
manner [26]. One can propose the variational wave

function, which either explicitly depends on the rela-
tive positions of electrons or implicitly includes this
dependence in an expansion into many Slater determi-
nants corresponding to the excited states. This second
approach is called the con�guration-interaction (CI)
method [26]. In the present work, we have applied
both the approaches. For the two-electron systems, we
can introduce the explicit dependence on the electron–
electron separation as follows [25]:

	�
� (r1; r2) = exp[−��(r1 + r2)]

∑

mnp
c�mnp

×(1±P12)rm1 r
n
2r

p
12PL(cos �1): (6)

The considered state � is characterized by the to-
tal angular-momentum quantum number L and corre-
sponds to either the spin singlet (sign +) or spin triplet
(sign −). In Eq. (6), P12 is the permutation operator,
which interchanges the electron indices, i.e., 1
 2; ��

and c�mnp are the variational parameters, PL(cos �i) is
the Legendre polynomial of order L, and �i is the an-
gle between z-axis and vector ri, the sum over p in-
cludes the terms with p = 0 and 1, which enables us
to calculate all the matrix elements analytically, and
the other sums run over the integral values of m and n
from the interval [0; : : : ; 12], which are chosen so that
the proper symmetry of the wave function is ensured
[25]. Wave function (6) was checked [25] to be su�-
ciently 
exible both for the H− ion and He atom in an
in�nite space and for the H− ion con�ned in a spher-
ical cavity. Its one-electron version very well repro-
duces the known analytical solutions for one-electron
problems in the spherical potential well [25]. In the
present work, we apply wave function (6) to test cal-
culations mainly, since – as we will show – the results
obtained with the use of trial wave function (2) only
slightly di�er from those obtained with Eq. (6).
Trial wave function (2), introduced in Section 2,

also takes into account the electron–electron correla-
tion in accordance with the method of con�guration
interaction [26]. However, the correlation is included
only partially, since not all one-electron excited states
are used in the construction of wave function (2). The
correlation would be fully included if we used all the
one-electron orbitals, that form the total wave func-
tion of the required symmetry.
Fig. 1 shows the ground-state energy of two

electrons in the QD calculated with the use of wave
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Fig. 1. Ground-state energy of the two-electron system in the QD
with V0 = 50RD as a function of QD radius. Solid curve shows the
results obtained with the use of wave function (2), dotted curve –
with Eq. (6), and dashed curve – by the Hartree–Fock method. The
donor Rydberg RD is the unit of energy and the donor Bohr radius
aD is the unit of length. The energy is determined with respect to
the twice conduction-band minimum of the potential-well region.
Inset: Overlap of wave function (2) (solid curve) and Hartree–Fock
wave function (dashed curve) with wave function (6) for two
electrons.

functions (2) and (6). The results obtained with wave
function (6) can be regarded to be ‘exact’ [25]. For
comparison, we have also performed the calculations
by the Hartree–Fock method with the wave function
being a single Slater determinant. In the Hartree–Fock
method the correlation is fully neglected. The results
obtained (Fig. 1) with trial wave function (2) and by
the Hartree–Fock method are almost indistinguish-
able from the ‘exact’ results for the QDs of small and
intermediate size, i.e., in strong- and intermediate-
con�nement regimes [27]. The di�erences are visible
for large QDs, i.e., in a weak-con�nement regime
[27]. The limit R → ∞ corresponds to the electron
gas, for which the correlation provides a considerable
contribution to the ground-state energy. The inset of
Fig. 1 shows the calculated overlaps of wave func-
tion (2) and the Hartree–Fock wave function with the
‘exact’ wave function (6), which allows us to esti-
mate relative errors done when neglecting partially
and fully the electron–electron correlation. We see

that both the overlaps are close to 1 even for relatively
large QDs. These results show that – in the strong-
and intermediate-con�nement regimes – the electron–
electron correlation plays a minor role in QDs and can
be properly described by the CI-type wave function
(2). We can even fully neglect the correlation (cf. the
Hartree–Fock results) and – in spite of this – obtain
useful results. These test results together with the
appropriate tests described in Ref. [25] provide quan-
titative arguments for the reliability of the results
obtained with the use of variational wave function (2).

4. Results

We are interested in the binding of few-electron
states in QDs. The condition of binding of N -electron
state � with the energy E(N )� has the form

E(N )� ¡E(N )th ; (7)

where E(N )th is the continuum-threshold energy for the
N -electron system. For the assumed reference energy,
the continuum-threshold energy takes on the following
values: E(1)th = 0, i.e., the energy of the electron in the
conduction-band bottom of the barrier material, E(2)th =
E(1)1s , i.e., the energy of the dissociated two-electron
system with one electron bound in the 1s state and the
second electron liberated to the conduction-band bot-
tom of the barrier region, and E(3)th = E(2)0 , i.e., the en-
ergy of the dissociated three-electron system with two
electrons bound in the ground state with the energy
E(2)0 and the third electron liberated to the conduction-
band bottom of the barrier region. The binding energy
W (N )

� of the �th state of N -electron system is de�ned
as

W (N )
� = E(N )th − E(N )� : (8)

A ful�llment of condition of binding (7) is equiva-
lent to the statement that the binding energy W (N )

� is
positive.
The energy levels of the two- and three-electron

arti�cial atoms calculated with the use of trial wave
function (2) are shown in Figs. 2a, b and 3. The
one-electron energy levels are also shown for com-
parison. The results depicted in Figs. 2a, b and 3
demonstrate that the few electrons con�ned in the QD
can form bound states. Both the ground and excited
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Fig. 2. Energy levels of one-, two-, and three-electron systems
in spherical QD as functions of radius R for (a) V0 = 10RD and
(b) V0 = 50RD: Solid curves correspond to the ground states,
dashed (dotted) – excited spin-unpolarized (polarized) states, and
dash-dotted – excited one-electron states. The units are the same
as in Fig. 1.

states can be bound if the QD radius is su�ciently
large.
Figs. 2b and 3 display the results for the QDs with

deep potential wells, which correspond to the nano-
structures made of GaAs=Al1−xGaxAs with x¿ ∼

Fig. 3. Ground-state energy of one-, two-, and three-electron sys-
tems in spherical QD as a function of radius R for V0 = 100RD.
The units are the same as in Fig. 1.

0:3, Si=SiO2, and Ge=SiO2. The results in Fig. 2a
show that even the QD with the relatively shallow
potential well can bind electrons. The results of Fig.
2a can be applied to the GaAs=Al1−xGaxAs QDs with
x¡ ∼ 0:1. Figs. 2a, b and 3 show the energy levels
of few-electron systems con�ned in the QDs of small
and intermediate size, i.e., they correspond to the
strong- and intermediate-con�nement regimes [27]. In
these QDs, the spin-singlet state (1s2) 1S is the ground
state of the electronic pair and the spin-doublet state
(1s21p) 2P is the ground state of the electronic triple.
Fig. 3 displays only the ground-state energy levels.

Moreover, in Fig. 2a and b some energy levels of the
two-electron excited states are omitted, since they lie
too close to the displayed levels. All the energy levels
calculated for the electron pair are shown in Fig. 4
for the QDs of small (R = 2aD) and large (R = 15aD)
size. Left and middle energy-level ladders show that
the electron–electron interaction lifts the degener-
acy of the energy levels, which are associated with
the states of the di�erent total spin and total orbital
angular momentum. This splitting results from the
Russell–Saunders coupling. The order of energy levels
essentially changes if the size of the QD increases (cf.
middle and right energy-level ladders). These results
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Fig. 4. Energy levels of electron pair in the QDs with V0 = 10RD
and the radius R=2aD (left and middle parts, left energy scale)
and R=15aD (right part, right energy scale). Left energy-level
ladder corresponds to the noninteracting electrons, middle and
right – to the interacting electrons. Solid lines correspond to
spin-singlet states and dashed – spin-triplet states. Thin lines show
the correspondence between the energy levels.

express a general trend, according to which the triplet
states substantially lower their energy and begin to be
located below the energy levels of the corresponding
singlet states if the QD radius is su�ciently large.
A ‘phase transition’ from the low-spin to high-spin

ground state is shown in Fig. 5, which displays the en-
ergy di�erence between the levels associated with the
spin-polarized and spin-unpolarized states. The states
(1s1p) 3P and (1s1p2) 4P are the spin-polarized states
for the two and three electrons, respectively, and the
states (1s2) 1S and (1s21p) 2P are the corresponding
spin-unpolarized states. The dashed curve (2e) in Fig.
5 shows that – for the potential-well depth V0 = 10RD
– the ground state of the electron pair in the QD
changes from the singlet to triplet at R ' 12:5aD. The
corresponding transformation of the three-electron
ground state from the doublet to quadruplet occurs
at R ' 10aD [dashed curve (3e)]. The critical values
of the QD radius for the low–high spin ground-state
transformation slowly increase with the increasing
potential-barrier height (cf. the solid curves in Fig.
5 for V0 = 50RD). The singlet–triplet ‘phase transi-
tion’ occurs for a certain critical electron–electron

Fig. 5. Di�erence between the lowest energy levels associated
with the spin-polarized (Epol) and spin-unpolarized (Eunpol) states
for the systems of two (2e) and three (3e) electrons in QDs as a
function of radius R. States (1s1p)3P of (2e) and (1s1p2)4P of (3e)
are the spin-polarized states and (1s2)1S of (2e) and (1s21p)2P
of (3e) are the spin-unpolarized states. Solid curves correspond
to V0 = 50RD, dashed – V0 = 10RD. The units are the same as in
Fig. 1.

separation, i.e., for a corresponding critical density.
A similar density-induced phase transition is known
from the theory of electron gas: according to the re-
sults obtained [28,42] by the Hartree–Fock method,
the electron gas below the critical density goes over
from the paramagnetic into ferromagnetic state.
The formation of the bound electron states is deter-

mined by both the depth and range of the con�nement
potential. In order to describe this e�ect we introduce
the e�ective quantum ‘capacity’ of the QD de�ned as
the product V0R2. The condition of binding [Eq. (7)]
for the �th state of the N -electron system can be for-
mulated in terms of the quantum capacity as follows:

V0R2¿
(N )� ; (9)

which means that the considered state becomes bound
if the e�ective ‘capacity’ of the QD exceeds the criti-
cal value 
(N )� . It is well known that the subsequent
one-electron states in the spherical potential well are
bound if the values of V0R2 (expressed in units RDa2D)
are larger than �2=4; �2; 2�2, and 9�2=4 for the states



B. Szafran et al. = Physica E 4 (1999) 1–10 7

Table 1
Estimated critical values of the quantum ‘capacity’, V0R2; of the
QD for the binding of the given two-electron states (in units
RDa2D). The values obtained from the simple ‘sum rule’ described
in the text are listed in the third row

(1s2)1S (1s1p)3P (1s1d)3D (1s2s)3S (1p2)3P

5.08 12.52 22.45 29.26 22.64
4.93 12.34 22.21 24.67 19.74

Table 2
Estimated critical values of the quantum ‘capacity’, V0R2; of the
QD for the binding of the given three-electron states. The numbers
are given in the same units and order as in Table 1

(1s21p)2P (1s1p2)4P (1s21d)2D (1s22s)2S

17.75 25.32 30.06 38.03
14.80 22.21 24.67 27.14

1s, 1p, 1d, and 2s, respectively. We have determined
the critical values of the quantum capacity of the QD
for the binding of two-electron (Table 1) and three-
electron (Table 2) arti�cial atoms. We have found that
the following simple ‘sum rule’ is roughly ful�lled:
the critical e�ective quantum capacity for the bind-
ing of the few-electron state is approximately equal
to (or greater than) the sum of the critical e�ective
capacities for the binding of the one-electron states,
from which the given state is built, e.g., 
(2)1s2 ' 2
(1)1s ,

(2)1s1p ' 
(1)1s + 
(1)1p ; 


(2)
1s1d ' 
(1)1s + 
(1)1d . The devi-

ations from this rule – due to the electron–electron
interaction – are rather small for the two-electron
states of the lowest energy (cf. Table 1).
The results of the present paper can be used to

determine the epxerimentally accessible radiative-
transition energies. Fig. 6 shows the energies of the
dipole allowed radiative transitions S–P and P–D for
the one-, two-, and three-electron systems in QDs. The
transition energies have been calculated for the fol-
lowing lowest-energy-states: the S-state is the 1s state
for the one-electron arti�cial atom (1e), the (1s2) 1S
state for the two-electron arti�cial atom (2e), and the
(1s1p2) 2S state for the three-electron arti�cial atom
(3e); the P-state is the 1p state for (1e), the (1s1p)
1P state for (2e), and the (1s21p) 2P state for (3e);
and the D-state is the 1d state for (1e), the (1s1d)
1D for (2e), and (1s21d) 2D for (3e). In the consid-
ered transitions, only the single one-electron orbital is

Fig. 6. Energy �E of radiative S–P and P–D transitions for the
systems of one electron (solid curves), two electrons (dashed
curves), and three electrons (dotted curves) in the QDs with
V0 = 50RD as functions of radius R. The symbols (circles, crosses,
and squares) correspond to these values of R, at which the binding
appears for the upper-energy state of the one, two, and three
electrons, respectively. Inset: S–P transition energy for one (1e)
and two (2e) electrons in the QDs of large radius.

changed. We see that – for the few-electron arti�cial
atoms – the curves corresponding to the S–P and P–D
radiative transitions are almost indistinguishable from
each other. This means that these transition energies
are nearly independent of the number of electrons in
the QD, i.e., are independent of the electron–electron
interaction. Until now, this property was known for
electron systems in an external uniform magnetic �eld
and two-dimensional parabolic con�nement potential
(generalized Kohn theorem [2,27]). The results of
Fig. 6 show that this property is also valid for the
few-electron systems in small QDs with the three-
dimensional spherical con�nement potential of �nite
depth. Inset of Fig. 6 points out that a certain depen-
dence of the transition energy on the electron–electron
interaction appears for QDs of large radius. However,
in this case the values of both the transition energies
and corresponding di�erences are very small.
We have also calculated average interparticle

distances for the electronic pair (Fig. 7). The re-
sults of Fig. 7 provide information about the spatial
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Fig. 7. Expectation values of electron–electron 〈r12〉 and elec-
tron–dot center 〈r1〉 distances for the two-electron ground state
(1s2)1S (solid curves) and excited state (1s2s)1S (dashed curves).
The vertical dashed lines correspond to the unbound delocalized
states. The donor Bohr radius aD is the unit of length.

distribution of electrons in the QD. The expectation
values of the electron–electron 〈r12〉 and electron–dot
center 〈r1〉 distances for the states (1s2) 1S and (1s2s)
1S increase almost linearly with the QD radius R, but
are smaller than R. This means that the electrons in the
bound state are spatially, almost completely, con�ned
within the QD. The delocalization of the unbound
states is shown by the dashed vertical lines. Fig. 7 also
shows that – contrary to the natural helium atom –
the interparticle distances in the arti�cial helium atom
are nearly the same for the ground and excited states.

5. Discussion and conclusions

We have studied the properties of few-electron
systems in spherical semiconductor QDs with the
con�nement potential of �nite depth and range. The
results obtained show that the bound states are cre-
ated in the con�ned few-electron systems if the
quantum capacity, i.e., V0R2, is su�ciently large.
Based on these results, we predict that – even for
the shallow con�nement potential – the binding of
few-electron states occurs for the QD of the rela-

Table 3
Binding energy (W ) of the ground state and S–P transition energy
(�E) for the arti�cial atoms consisting of one (1e), two (2e),
and three (3e) electrons in the nanocrystals of Si and Ge and in
porous Si (p-Si). For p-Si, only the ground states of one and two
electrons are bound in the Si nanocrystals of the estimated size
[21]. The energy is expressed in meV

Nanocrystal W (1e) W (2e) W (3e) �E(1e) �E(2e) �E(3e)

Si 3156.0 3117.0 3025.0 45.29 45.03 45.61
Ge 3060.0 2858.0 2718.0 206.1 201.6 216.6
p-Si 512.7 298.1 – – – –

tively large size. The bound few-electron arti�cial
atoms with size-quantized energy levels can be
formed in large QDs with a rather small potential
well depth [30]. The shallow con�nement potential
corresponds to GaAs=AlxGa1−xAs nanostructures
with x¡ ∼0.1. So far, the spherical QDs fabricated
from GaAs were obtained only in an organic matrix
[6]. No experimental data are known to us for ar-
ti�cial atoms in the spherical QDs fabricated from
GaAs=AlxGa1−xAs. In the cylindrical QDs made of
GaAs=Al0:22Ga0:78As=In0:05Ga0:95As, the shell-�lling
e�ect in arti�cial atoms has been recently studied ex-
perimentally by the transport spectroscopy [31] and
described theoretically by the present authors [32].
The deep con�nement potential is relevant to

the Si=SiO2 [4] and Ge=SiO2 [5] nanostructures. In
Table 3, we apply the present results to the QDs made
of Si and Ge. The estimated radii of the nanocrystals
are 5 nm for Si [4] and 1.6 nm for Ge [5]. We take on
RD = 31:27 and 9.81meV and aD =1:94 and 4.58 nm
for Si and Ge nanocrystals, respectively, and assume
that the value V0 = 3:2 eV estimated for Si=SiO2
nanostructure [4] can as well be used for Ge=SiO2.
We also apply our results to the Si nanocrystals in the
porous Si taking on V0 = 1:7 eV [22] and R=1:25 nm
[21]. The results listed in Table 3 demonstrate that
the binding energies of few-electron arti�cial atoms
formed in Si and Ge spherical QDs are close to V0
and the S–P transition energies are nearly equal to
each other (cf. Fig. 6).
We remind the reader that the present theoreti-

cal model neglects the change of the electron band
mass and dielectric constant at the QD boundary.
The problem of space-dependent electron mass was
considered by the present authors in Ref. [25] for
one-electron states in spherical QDs. According to
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Ref. [25] this e�ect is negligibly small for the large
QDs with the deep con�nement potential due to the
vanishingly small penetration of electrons into the
barrier region.
The change of the dielectric constant leads to the

induced electric polarization at the QD boundary
[33]. The in
uence of the electric polarization on the
electron states in the spherical QD was studied in
Refs. [33–35] under the assumption of the con�ne-
ment potential of in�nite depth. Based on these results
[33–35], we can state that for the QD embedded in a
dielectric medium of the smaller dielectric constant,
which is the case of Si=SiO2 and Ge=SiO2 nanos-
tructures, the electric polarization will contribute to
an additional potential, which will repulse the elec-
trons from the boundaries pushing them towards the
dot center. As a result, the electrons will be more
strongly localized inside the QD. For the heterostruc-
tures with the small di�erence of dielectric constants,
e.g., GaAs=AlGaAs, the e�ect of electric polarization
is small.
If the QD radius increases, the reordering of few-

electron energy levels occurs. In particular, the spon-
taneous ‘phase transition’ appears from the low-spin
in high-spin ground state. A similar behavior has been
obtained by Bryant [9] for the in�nite rectangular po-
tential well and by Fujito et al. [16] and M�uller and
Koonin [17] for the parabolic potential. The singlet–
triplet transition occurs in the natural He atom at high
magnetic �eld.
The problem of spherical QDs was studied by

Belkhir [36], who assumed that the electrons are
constrained to move on the surface of the sphere of
constant radius and applied the single-electron basis
in order to diagonalize the Hamiltonian matrix. Since
this constraint is essentially semiclassical, the author
[36] found that the interaction energy for N -electron
QD scales like N (N − 1), which is in agreement
with the result of classical electrostatics for dis-
crete charges. This e�ect was discussed in detail by
Maksym et al. [37].
The dipole transition energy obtained in the

present paper (Fig. 6) exhibits a similar property to
that resulting from the generalized Kohn theorem
[2,27,29,43,44] According to this theorem, the transi-
tion energy is independent of the electron–electron in-
teraction, which holds true under the assumptions that
the electrons are subjected to the external parabolic

potential and the electron–photon interaction is de-
scribed in the dipole approximation. This property
results from the exact separation of the total Hamilto-
nian in the center-of-mass and relative coordinates of
the electronic system [27]. The near independence of
the S–P and P–D transition energies of the electron–
electron interaction, found in the present paper, has
a di�erent reason. This property results from an ap-
proximate cancellation of the Coulomb interaction
contributions to the lowest energy levels of electrons
in the QD of small size and is connected with almost
the same electron–electron separations in the ground
and excited states (cf. Fig. 7). Therefore, in the spher-
ical QDs of small radius, the major contribution to
the transition energy stems from the di�erences be-
tween the one-electron energy levels of the potential
well, which are nearly the same for one and many
electrons. We note that the independence of the tran-
sition energy of the number of electrons, obtained
in the present work, does not require the assumption
of the dipole approximation for the electron–photon
interaction, since the transition energy is calculated
as the di�erence between the corresponding energy
eigenvalues. However, as we have shown in the inset
of Fig. 6, this near independence is no longer valid for
QDs of large radius, because the Coulomb interaction
energy more strongly depends on the quantum state
for more separated electrons. Nevertheless, the di�er-
ences between the transition energies are very small.

6. Summary

In the present paper, we have shown that the arti-
�cial helium atom (electron pair in the QD) and the
arti�cial lithium atom (electron triple in the QD) can
form bound states with discrete energy spectra, which
– for small QDs – are qualitatively similar to those
of natural atoms. The conditions of binding obtained
in the present paper should be useful in experiments
with the QDs. It has been shown that the dipole tran-
sition energy for the few-electron arti�cial atoms is
almost independent of the electron–electron interac-
tion. We have found that the order of energy levels
substantially changes as a function of the QD radius.
The results of the present paper can be applied

to Si=SiO2 and Ge=SiO2 spherical QDs as well as to
the Si nanocrystals, which are formed in the porous
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silicon. We predict that in these nanocrystals the ex-
cess electrons can create few-electron bound states
with discrete energy spectra and �nite binding ener-
gies. The energy scale for the created arti�cial atoms is
determined by the depth of the con�nement potential.
In contrast to the arti�cial atoms, the characteristic
energy scale for the con�ned excitons is determined
by the band gap of the nanocrystal. The radiative tran-
sitions between the discrete energy levels of arti�cial
atoms and con�ned excitons should be clearly distin-
guished from each other in spectroscopic experiments.
To the best of our knowledge, the present work pro-
vides the �rst theoretical results for the ground and
excited states of arti�cial helium and lithium atoms
with the �nite-barrier con�nement potential.
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