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Abstract

In electrostatic (gated) quantum dots, the potential con$ning the electrons is generated by the electrostatic $eld, which
is created by the external voltages applied to the leads. Changing the geometry of the nanodevice we can obtain a diverse
class of con$nement potentials. We discuss the choice of the nanodevice parameters, which allows us to get the con$nement
potentials with the designed shape: from the rectangular potential well to the potential well with smooth edges. In particular,
we $nd the conditions, under which the con$nement potential possesses the Gaussian shape or is parabolic in a large region
of the quantum dot.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The pro$le of the potential con$ning the electrons
in quantum dots (QDs) only in few cases is known
with the su:cient precision [1–4]. Usually, the ex-
perimental data are interpreted with the use of the
model con$ning potentials taken in forms of either the
rectangular potential well or parabolic potential. The
knowledge of the realistic pro$le of the con$nement
potential is necessary to a theoretical description of
the electronic properties of QDs and—what is more
important—to a fabrication of nanodevices with de-
signed properties. In the present paper, we show a
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possibility of constructing the QD (i.e. the choice of
geometric parameters) with the designed con$nement
potential pro$le.

2. Theory

We consider the nanodevice fabricated from the pla-
nar structure, which consists of undoped and doped
GaAs and AlGaAs layers (Fig. 1(a)). The nanostruc-
ture considered well approximates the QDs studied by
Ashoori [5–7].
The voltage applied between the gate and the sub-

strate leads to the appearance of the electrostatic $eld
in the nanodevice. The inhomogeneity of the $eld in
the region below the cap with radius R generates the
lateral con$nement potential. The electrons are con-
$ned in the GaAs quantumwell in the region below the
cap (this is the physical QD region). We calculate the
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Fig. 1. (a) Schematic of the nanodevice. (b) Electron potential energy on the cylinder axis as a functions of z.

pro$le of the con$nement potential ’(r; z) by solving
the Poisson equation in the cylindrical coordinates(
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where �(z) is the charge density of the ionized impu-
rities and �s is the static dielectric constant of GaAs.
We put the boundary condition for the Poisson equa-
tion on the surface of cylinder, which encompasses the
integration domain. The gate and substrate with the
known potentials form the cylinder bases. We take on
the cylinder radius large enough in order the electro-
static $eld to be approximately parallel to the cylinder
axis on the side surface of the cylindrical integration
domain. Then, we deal with the two-dimensional Pois-
son equation, which can be solved if we only know the
potential on the leads. Poisson equation (1) has been
solved by the $nite-diHerence relaxation method.

3. Results

Since both the electron charge and the voltage ap-
plied to the gate are negative, we present in $gures—
instead of the electrostatic potential—the potential
energy of the electron, i.e. U = −e’, where e is the
elementary charge. The calculated pro$le of the elec-
tron potential energy is depicted in Figs. 1(b) and 2.
Fig. 1(b) displays the potential energy on the cylinder
axis and Fig. 2—the quasi-three-dimensional spatial
pro$le of the potential energy. The results of Figs. 1(b)
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Fig. 2. Total potential energy of the conduction-band electron.

and 2 have been obtained for the same geometry of
the nanodevice as in Ref. [5]. However, we have
taken on the cap radius R= 205 nm, which is greater
than the nominal value (175 nm). Such choice of the
cap radius allows us to reproduce the experimental
results [5] of the capacitance spectroscopy in the
magnetic $eld. Fig. 2 shows the results for the gate
voltage Vg = −0:375 V, at which the binding of the
$rst electron in the QD is observed [5]. If we move
along the cylinder axis from the substrate to the gate,
we observe [Fig. 1(b)] that the electron potential en-
ergy exhibits $rst the decrease and next the increase
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Fig. 3. Lateral con$nement potential energy calculated from Poisson equation (dots), and $tted parabolic (dashed lines) and Gaussian
functions (solid line) as a function of the distance from the cylinder axis for (a) the QD with parameters compatible with Ref. [5],
(b) almost rectangular potential well, (c) Gaussian shape, and (d) almost parabolic in a large region of the QD.

modulated by the jumps, which result from the con-
duction band oHsets. In the GaAs layer, the potential
energy takes on negative values in the region near
the cylinder axis. This is the QD region, in which the
electrons are localized. In Fig. 3, we have displayed
the electron potential energy U (r; z0) for z0 taken on
inside the quantum well region. These plots provide
the pro$les of the potential energy of the lateral con-
$nement. The dots correspond to the numerical solu-
tions of the Poisson equation and the solid and dashed
curves are the plots of the adjusted analytic functions.
The results of Fig. 3(a) have been obtained with
the geometric parameters of the Ashoori [5] nano-
device. We see that—in this nanodevice—the lateral

con$nement potential is well approximated by the
parabola in the small region near the cylindrical axis.
If we change the cap radius, we can obtain the dif-

ferent shapes of the con$nement potential. For large
radius we get the potential well with almost rectan-
gular shape. Fig. 3(b) shows the potential energy for
R= 800 nm, which correspond to the QDs studied in
Ref. [6]. This shape of the con$nement potential af-
fects the capacitance spectroscopy results [6]. The Lat-
ness of the potential energy, which occurs in a large
region near the QD center, causes that the electron
energy is sensitive to the Luctuating potential, which
is created by the ionized donors in the barrier layer.
As a result, the electrons con$ned in the QD do not
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form any well-de$ned shell structure. This leads to the
bunching in the addition spectra [6].
It is interesting that we can obtain the con$nement

potential with a Gaussian shape. The results obtained
for R=65 nm are depicted in Fig. 3(c), which shows
that the numerical results can be very well $tted by the
Gaussian in the entire nanodevice. The properties of
electrons con$ned in the Gaussian potential has been
studied in Ref. [8]. Of course, near the QD center, the
numerical results can be approximated by the parabola
[cf. dashed line in Fig. 3(c)]. In Fig. 3(d), the con$ning
potential obtained for R = 120 nm is depicted. For
this cup radius the potential possesses an almost ideal
parabolic shape in a large region of the QD.
The con$nement potential energy shown in Fig. 3

has been calculated under the condition that exactly
one electron is bound in the QD. The corresponding
gate voltage values are Vg =−0:375;−0:470;+0:100
and −0:125 V for Figs. 3(a), (b), (c), and (d), respec-
tively. All the other parameters of the nanodevice are
the same.
In general, the dependence of the con$nement po-

tential on the parameters of the nanodevice is complex.
When studying these dependences we have to repeat
the calculations for each nanostructure. Nevertheless,
there exist a certain important property of the con$ne-
ment potential, which does not require the numerical
calculations in order to be found. This is the scaling
of the sizes and potentials of QDs. Looking at Eq. (1),
we see that after multiplying all the geometric sizes of
the nanodevice by factor k and simultaneously divid-
ing the charge density by k2 we obtain the solution of
Eq. (1), i.e. electrostatic potential, as the same function
of the coordinates, which are expressed in the length
unit multiplied by k. Therefore, we know—without
performing the calculations—that in the parabolicity

region we obtain the k times smaller oscillator energy
if we construct the nanodevice with k-fold enlarged
linear sizes and k2 times weaker doping of the barrier
layer.

4. Summary

When fabricating the nanodevice from the $xed
layer structure, the cap of certain size is put on the
top layer. In such a manner, we $x the pro$le of the
con$nement potential, which can generate the QD re-
gion. In the present paper, we have shown the evolu-
tion of the con$nement potential shape as a function
of the cap radius from the nearly rectangular potential
well to the potential well with smooth boundaries. In
particular, we have determined the parameters of the
QD, for which the con$nement potential has a Gaus-
sian shape and an almost ideal parabolic shape in a
large region of the QD.
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