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1. INTRODUCTION
Quantum dots (QDs) are solid-state nanostructures with sizes not exceeding 1 �m that can
bind excess electrons in localized states with discrete energy levels [1]. The QD with the
confined electrons can be treated as an artificial atom [2, 3]. Recently, the two types of
QDs are the most frequently studied: these are the self-assembled QDs [1, 4, 5] and the
electrostatically gated QDs [6, 7]. The self-assembled QDs [4, 5] are fabricated during the
growth of semiconductor material strained by a lattice mismatch with a substrate. In this
process, the strain between the deposited material and the substrate leads to the formation
of islands of the self-assembled QDs. The potential confining the charge carriers in the self-
assembled QDs results from the strain and the discontinuities of the conduction and valence
band edge energies (i.e., band offsets).
The electrostatically gated QDs are fabricated from the semiconductor heterostructure,

which consists of either quantum-well and quantum-barrier layers or a heterojunction with
an inversion layer. In both the cases, the band offsets between conduction bands of the
adjacent layers create the strong confinement of electrons in the vertical direction (i.e.,
the direction perpendicular to the interfaces between the layers). The vertical confinement
leads to a creation of a quasi-two-dimensional electron system, which is further confined
laterally. Moreover, the nanostructure contains electrodes to which external voltages are
applied. The electrostatic field, created by the external voltages, entails the confinement of
the electrons in the lateral directions (i.e., parallel to the planes of the layers). Depending
on the location of the electrodes, we deal with the lateral or vertical electrostatic QDs. In
the lateral QDs, all the electrodes are attached to the upper layer and the electrons are
confined in the inversion layer or quantum-well layer located below the electrodes. In the
vertical QDs, the electrodes are located vertically above and below the QD region (i.e., the
tunneling current flows in the vertical direction). The vertical QDs are usually fabricated by
etching a pillar from a planar heterostructure, which consists of the layers made of different
semiconductor materials. In the electrostatically gated vertical QDs [6, 7], the total potential
confining the electrons stems from both the band offsets and external voltages applied to
the attached electrodes. The confinement potential is effectively tuned by the gate voltage.
The gate electrode can be either the upper electrode in the form of a cap in the two-
electrode nanodevice [6] or the ring-shaped electrode placed at the side of the pillar in
the three-electrode nanodevice [7]. The QDs with the electrodes attached are also called
electrostatically defined, or, simply, electrostatic QDs [8]. Another name used for these QDs is
gate controlled, or gated QDs, because the gate electrode plays a crucial role in determining
their electronic properties.
The electrostatically gated QDs are attracting much interest in both physics [9–13] and

quantum engineering [14–18]. In the basic physical research, the QD is a unique laboratory
for studying the few-electron systems. In the electrostatically gated QDs, the properties of the
confined electrons are determined by the confinement potential that can be, to a large extent,
modified by changing the external voltages. This leads to an opportunity of studying the few-
electron systems with the tailored properties. A broad class of new interesting phenomena
occurs when applying the external magnetic field to the QD-confined electron system [2, 19–
26]. The gated QD is a very important nanoelectronic device because it is a prototype
of a single-electron transistor [14–18, 27–30]. Possible applications of the single-electron
transistors are expected to yield an extremely high speed of nanoelectronic devices at low
power consumption. Another exciting field of future applications of electrostatic QDs is
quantum computation [31–45]. The QDs can be used to represent quantum bits (qubits)
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[31, 32, 36, 39, 45] and to perform a readout of qubits as well as and logic operations on the
qubits, the so-called logic gates [31–33, 35, 38, 44].
The important role of the electrostatic QDs in both basic and applied physics resulted

in an enormous increase in the number of papers devoted to the nanotechnology of QDs
[16, 46–49] and the experimental [6, 7, 23–26, 50–59] and theoretical [2,60–88] studies of
the electronic properties of QDs. These investigations have led to considerable progress in
understanding the electronic properties of QDs [83–88]. For example, we know [88] how to
modify the parameters of the nanostructure to obtain the QD-based nanodevices with the
required characteristics.
In the experimental investigations of the electrostatic QDs, new spectroscopic techniques

were invented. They include the single-electron capacitance spectroscopy [6] and the single-
electron transport spectroscopy [7]. Both these techniques are based on the single-electron
tunneling [89, 90] via the nanostructure and allow us to measure the discrete energy levels
of the confined electrons with high precision. The application of these spectroscopic tech-
niques led to several spectacular discoveries. In 1993, Ray Ashoori’s MIT research group
[6] observed the single-electron charging of QDs and the magnetic-field evolution of the
electron energy levels. In 1996, the research teams of Seigo Tarucha from Nippon Telegraph
and Telephone (Japan) and Leo Kouwenhoven from the Delft Technical University (the
Netherlands), using the single-electron transport spectroscopy, discovered the shell filling in
artificial atoms formed in vertical gated QDs [7]. Next, the same teams [23] succeeded in
completing a stability diagram with Coulomb diamonds and found the phase transitions
in few-electron artificial atoms in an external magnetic field. In 1997 the MIT group [91],
using the capacitance spectroscopy, discovered a bunching of energy levels of the elec-
trons confined in QDs by measuring the single-electron tunneling in the magnetic field.
Other interesting results include a Kondo effect for QDs [92–96], a cotunneling of electrons
through the QD [97], and a formation of a maximum-density droplet (MDD) and Wigner
molecules [24] in QDs at high magnetic fields. The recent experimental studies of the gated
QDs are focused on the experimental realization of qubits and quantum logic operations
[58, 59].
These experimental discoveries require a proper theoretical interpretation. Several the-

oretical papers are devoted to the electrostatically gated QDs [13,83–88]. To describe the
quantum states of electrons confined in the QD with the electrodes attached, we have
to solve the Poisson-Schrödinger problem by a self-consistent method [84, 86]. Using this
approach to the three-electrode QDs [7, 23], we succeeded in obtaining a quantitative
description [84, 86, 98] of the shell filling [7], stability diagram [23], phase transitions in the
magnetic field [24], and transport windows [23]. The application of the same self-consistent
procedure to the two-electrode QDs [6] led to the quantitative description [88] of the single-
electron capacitance experiments in the magnetic field. Moreover, it was shown [88] how
to change the nanodevice parameters to obtain the designed shape of the potential confin-
ing the electrons. These studies [86, 88] resulted in a computer modeling of the electronic
properties of the electrostatically gated QDs.
In this chapter, we discuss the fundamental physical properties of the electrostatically

gated vertical QDs with two [6] and three [7] electrodes connected to the nanodevice.
We present the theoretical methods [84, 86, 88, 98], elaborated in our research group, that
describe basic electronic characteristics of these QDs. These methods also allow us to design
the nanodevices with the required electronic properties and to predict new effects.
This chapter is organized as follows: Section 2 describes the structure of the two- and

three-electrode QDs. Section 3 introduces the conditions of the single-electron tunneling and
presents the fundamentals of the single-electron capacitance and single-electron transport
spectroscopy. The self-consistent method to solution of the Poisson-Schrödinger problem is
presented in Section 4, and the application of this method to a quantitative interpretation
of the single-electron transport spectroscopy data is given in Section 5. Section 6 is devoted
to a modeling of QD confinement potentials. Moreover, in Section 6, we demonstrate how
to change the parameters of the nanodevice to obtain the required electronic characteris-
tics of the QDs. In Section 7, we discuss the effect of the external magnetic field on the
electronic properties of the QDs and the single-electron transport. The electron–electron
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correlation effects are discussed in Section 8. Special attention is paid to a role of correlation
in the quantitative description of the single-electron tunneling through the QDs. A theory of
Wigner molecules is outlined in Section 9. A study of coupled QDs (artificial molecules) is
presented in Section 10. A discussion of reliability of the theoretical methods, presented in
previous sections, is provided in Section 11. In Section 12, we outline the applications of the
electrostatically gated QDs to a construction of single-electron transistors and a quantum
computing. Section 13, which contains conclusions and a summary, is followed by a glossary
of the most important notions used in the chapter.

2. STRUCTURE OF NANODEVICES
We consider the two types of electrostatically gated vertical QDs, namely, the two-terminal
(two-electrode) QDs studied by Ashoori et al. [6] and three-terminal (three-electrode) QDs
studied by Tarucha et al. [7] and Kouwenhoven et al. [23]. The study of these two types of
vertical gated QDs leads to very interesting physics and promising applications. The scanning
electron micrographs of the three-terminal QDs with various shapes [12] are shown in Fig. 1.
These QDs were fabricated [12] as pillars with circular, rectangular, and triangular bases.
The lateral sizes of the pillars are ∼500 nm. In Fig. 1, we see the top electrode (drain) and
the black metal ring (gate).

2.1. Two-Terminal Quantum Dots

The schematic of the two-terminal QD nanodevice of Ashoori et al. [6] is shown in Fig. 2.
The nanodevice, studied in Ref. [6], has a planar structure and consists of the GaAs and
AlGaAs layers. The substrate layer made of the heavily donor doped GaAs with 300 nm
thickness forms the bottom electrode. On the substrate, the following layer sequence is
grown: the 60-nm GaAs spacer, the 12.5-nm AlGaAs tunel barrier, the 17.5-nm GaAs quan-
tum well, the 50-nm AlGaAs blocking barrier, and the 30-nm GaAs cylindrical cap. The
blocking barrier consists of the two sublayers: the 15-nm lower sublayer is undoped and the
35-nm upper sublayer is doped with donors. In Ref. [55], this sublayer was homogeneously
doped in its entire volume, while in Ref. [6] a � dopping was used. The nanostructure was
etched by plasma to produce a pillar of 30-nm height. Finally, the entire nanostructure was
covered by the metal layer that formed the top gate electrode. The voltage applied between
the gate and bottom electrode creates the inhomogeneous electrostatic field, which, in the
region of the nanodevice located below the GaAs cap, generates the potential confining the
electrons in the GaAs quantum well in the lateral directions (i.e., parallel to the interfaces).
The vertical confinement, i.e., perpendicular to the interfaces, results from the conduction-
band offsets at the GaAs/AlGaAs interfaces. The physical region of the QD is located within
the GaAs quantum-well layer below the cap.

2.2. Three-Terminal Quantum Dots

The three-terminal QD studied by Tarucha et al. [7] and Kouwenhoven et al. [23] has the
form of a pillar and is schematically depicted in Fig. 3. The scanning electron micrographs
of the QD pillars with various shapes are shown in Fig. 1. Each pillar [7, 23] is fabricated

Figure 1. Scanning electron micrographs of QD pillars with various shapes. The pillars have widths ∼0�5 �m.
Reprinted with permission from [12], L. P. Kouwenhoven et al., Rep. Prog. Phys. 64, 701 (2001). © 2001, IOP
Publishing Ltd.
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Figure 2. Schematic of the two-terminal nanodevice [6]. R is the radius of the GaAs cap, covered by the metal
gate; Rc is the radius of the cylindrical surface, on which the boundary conditions are put for the Poisson equation
[88]. From Ref. [88].

from the multilayer GaAs/AlGaAs/InGaAs heterostructure. The physical region of the QD
is located within the 12-nm In0�05Ga0�95As quantum-well layer. The two Al0�22Ga0�78As barrier
layers adhere to the quantum-well layer: the upper one is 9 nm thick and the lower one is
7.5 nm thick. This part of the pillar is surrounded by the ring-shaped Schottky gate. The
sequences of the layers lying above the upper AlGaAs barrier and below the lower AlGaAs
barrier are the same (Fig. 4). Each of them consists of the 3-nm GaAs spacer layer and the
stepwise doped n-GaAs layers. There are four n-GaAs layers: the 70-nm GaAs layer with

~0.5 µm
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Figure 3. Schematic of the vertical three-terminal nanodevice. The QD is located in the InGaAs layer between the
two AlGaAs tunnel barriers. Reprinted with permission from [12], L. P. Kouwenhoven et al., Rep. Prog. Phys. 64,
701 (2001). © 2001, IOP Publishing Ltd.
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Figure 4. Schematic of the model [86] of the three-terminal nanodevice [7]. Given are the donor concentrations
and layer thicknesses. Dotted line indicates the cross section of surface � with inner (outer) radius R (Rb) on which
we put the boundary conditions for the Poisson equation. From [86].

donor concentration ND = 1 × 1017 cm−3, which adheres to the spacer, the 150-nm GaAs
layer with ND = 1�4 × 1017 cm−3, and the 180-nm GaAs layer with ND = 2�0 × 1017 cm−3,
which is terminated by the heavily doped GaAs layer, with ND = 2�0 × 1018 cm−3. The ter-
minating GaAs layers form the Ohmic contacts, i.e., the top (drain) and bottom (source)
electrodes. The nanostructure was etched to form a pillar to a plane just below the lower
(thinner) AlGaAs barrier.
Next we focus on the pillar with the cylindrical shape. We identify the z-axis with the

cylinder axis, whereby z = 0 corresponds to the center of the InGaAs layer. Then, the
nanodevice is asymmetric with respect to the z = 0 plane. The upper part of the nanodevice
is the etched pillar and the lower part consists of the nonetched GaAs layers. However, the
stability diagram measured in Ref. [23] shows an almost perfect symmetry against the drain-
source voltage polarity. Therefore, the drain and source can be interchanged by using the
voltage of the opposite polarity. This symmetry allowed us to apply in the calculations [84, 86]
the model nanostructure (see Fig. 4), which was symmetric with respect to the inversion in
the z = 0 plane. Nevertheless, the different thicknesses of the AlGaAs barrier layers were
taken into account in calculations [84, 86]. The application of the nearly symmetric model
nanostructure [84, 86] considerably simplifies the calculations.

3. SINGLE-ELECTRON TUNNELING SPECTROSCOPY
The energy levels of electrons confined in the QDs can be measured by either the infrared
magnetoabsorption spectroscopy [99, 100] or the spectroscopy based on the single-electron
tunneling [90]. In the magnetoabsorption, the transitions between discrete energy levels
are observed in the infrared radiation [99, 100]. The single-electron tunneling spectroscopy
exploits the sequential tunneling of electrons via the localized QD states. In the sequential
tunneling process, the electrons tunnel one by one from the one lead attached to the QD
and next, depending on the voltage drop in the nanodevice and the presence of either the
blocking or tunnel barrier, can either jump back to the same lead or tunnel further to the
another lead. In the first case, we can detect oscillations of the charge confined in the QD,
which leads to the single-electron capacitance spectroscopy, and in the second case, we can
measure a current through the QD, which leads to the single-electron transport spectroscopy.



Modeling of Electrostatically Gated Vertical Quantum Dots 395

Conditions for the electron energy measurements by either the method are similar and can
be formulated with the help of electrochemical potentials [101].

3.1. Conditions of Single-Electron Tunneling

The conditions of the resonant single-electron tunneling via the QD are determined by the
energy balance between electrochemical potentials of the electrons in the top and bottom
electrodes and in the QD [101]. The electrochemical potential of the electrons in the elec-
trode denoted by symbol � is defined as

�� = �0
� − eV�� (1)

where �0
� is the chemical potential of electrons in electrode �, V� is the voltage applied to

electrode �, and e is the elementary charge (e > 0), that is, the electron charge qe = −e. For
the metal electrode at zero temperature and zero voltage, the chemical potential is identified
with the Fermi energy, that is,

�� = F� � (2)

If the heavily n-type doped semiconductor layer is adjacent to the metal surface, the Fermi
energy equalizes with a donor energy level (ED). For N electrons confined in the QD, the
chemical potential is defined as the energy needed to increase the number of electrons by
one, that is,

�0
QD ≡ �N+1 = EN+1 − EN� (3)

where EN is the ground-state energy of the N -electron system confined in the QD.
The tunneling of the single electron from electrode � to the QD is energetically allowed if

�� ≥ �N+1� (4)

If the sign of inequality (4) is opposite, the electron can jump back from the QD to electrode
�. Inequality (4) determines the condition for the single-electron charging of the QD. In
the capacitance spectroscopy measurements [6], a superposition of a dc voltage and a small-
amplitude ac voltage is applied between the two electrodes (called top and substrate contacts,
or gate and back contacts). For the dc gate voltages, for which chemical potential �N+1 of
the QD, becomes equal to the Fermi energy of the substrate, the small-amplitude ac voltage
causes the tunneling of the �N + 1�th electron from the substrate through the tunnel barrier
into the QD and back. Because of the presence of the AlGaAs blocking barrier, the electrons
tunnel between the substrate (back) electrode and the QD, only, and do not reach the top
(gate) electrode. In this process, the capacitance of the QD nanodevice rapidly increases.
When measuring the differential capacitance as a function of the dc gate voltage, Ashoori
et al. [6] observed the sharp peaks that correspond to the tunneling of the subsequent
electrons through the barrier (see Fig. 5). The peaks of the differential capacitance are
detected by a high-resolution capacitance bridge [6].
Let us consider the transport spectroscopy. In this case, condition (4) for the single-

electron charging of the QD can be extended to the tunneling of the single electron from
the one electrode (source) through the QD to the second electrode (drain) as follows:

�s ≥ �N+1 ≥ �d� (5)

where �s (�d) is the electrochemical potential of the source (drain). The electrochemical
potentials of the source and drain are determined by the voltages applied to the source (Vs)
and drain (Vd) [see Eq. (1)]. In the three-electrode nanodevice [7], the voltage applied to the
third (gate) electrode affects the confinement potential, which in turn changes the energy of
the electrons confined in the QD (i.e., chemical potential �N+1). Therefore, the gate voltage
has an indirect, but essential, influence on the electron tunneling. If the Fermi energies of the
source and drain are equal (i.e., Fs = Fd = F ), then, according to condition (5), the single-
electron tunneling is determined by the drain-source voltage (bias voltage) Vds = Vd − Vs .
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Figure 5. Capacitance of the sample containing the two-electrode QD as a function of the gate voltage. The first
peak on the left represents the first electron entering the QD. Reprinted with permission from [22], R. C. Ashoori,
Nature 379, 413 (1996). © 1996, Nature.

By applying the reverse bias (i.e., Vds with opposite sign), we can reverse the inequality
signs in condition (5) and obtain the tunneling of the electron from the drain to the source.
This means that the notions of the source and drain are the matter of convention. One can
equally well speak about the first and second electrodes, the left and right electrodes, the
top and bottom electrodes. Because of the weak inequalities in condition (5), the electron
can tunnel through the nanodevice even at nearly zero bias.
If condition (5) is satisfied, number N of electrons confined in the QD changes as

follows:

N → N + 1→ N → · · · (6)

and the single electron tunnels from the first electrode through the QD to the second elec-
trode, known as opening up the transport window. If condition (5) is not fulfilled, the number
of electrons confined in the QD remains constant, and we are dealing with the quantum
Coulomb blockade [102] that results from the discreteness of energy levels of the electrons
confined in the QD. In general, one observes [7] unequally spaced peaks of the tunneling
current as a function of gate voltage for the source-drain voltage nearly equal to zero (see
Fig. 6). If the number of electrons confined in the QD becomes large (i.e., larger than ∼100),
the differences between the electron energy levels are very small and become equally spaced.
Therefore, the peaks of the current are almost equally spaced on the gate voltage scale by
�Vg = e/C, where C is the capacitance of the QD nanodevice. The equal spacings between
the tunneling-current peaks at Vds 
 0 can be described with the help of the classical model
of the Coulomb blockade [89].

3.2. Single-Electron Capacitance Spectroscopy

The single-electron capacitance spectroscopy technique was applied by Ashoori et al. [6] to
the two-terminal vertical QDs. The experimental results obtained in Ref. [6] are shown in
Fig. 5 in which each sharp peak corresponds to the tunneling of the subsequent electrons
from the gate to the QD.
The same technique, applied in the external magnetic field, is allowed to trace the mag-

netic field evolution of energy levels for N electrons confined in the QD [6]. Figure 7 shows
the results for N = 1� � � � � 10. The bumps, visible on the plots for N ≥ 2, correspond to the
magnetic-field-induced transformations of the N -electron ground state (e.g., for N = 2, the
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Figure 6. Source-drain current versus gate voltage at drain-source voltage Vds = 150 �V for the three-electrode
QD with diameter D = 0�5 �m. Reprinted with permission from [7], S. Tarucha et al., Phys. Rev. Lett. 77, 3613
(1996). © 1996, The American Physical Society.

singlet-triplet transition is observed at B 
 2 T). The electron addition spectra for N < 200
exhibit a bunching [91] (i.e., the plots are grouped into the bunches comprising from two to
six lines).

3.3. Single-Electron Transport Spectroscopy

The most spectacular results, obtained by the single-electron spectroscopy for the three-
terminal QDs [7, 23, 24], are shown in Figs. 6, 8, 9, and 10. Figure 6 shows the source-drain
current as a function of gate voltage measured [7] at small bias (Vds = 150 �V) and at

Figure 7. Single-electron capacitance spectroscopy data for the first 10 electrons in the QD as a function of magnetic
field. The vertical bar represents an energy of 5 meV. The dashed line shows the energy of the lowest Landau level.
Reprinted with permission from [22], R. C. Ashoori, Nature 379, 413 (1996). © 1996, Nature.



398 Modeling of Electrostatically Gated Vertical Quantum Dots

very low temperature (T 
 50 mK). Each current peak results from many sequential single-
electron tunneling processes. The time interval between the tunneling events was estimated
to vary from 1 ns to 100 ns [57]. For Vg < −1�6 V, the QD is empty. The first peak at Vg 

−1�6 V corresponds to the tunneling of the first electron via the QD. With the increasing
gate voltage, the subsequent electrons are added to the QD. The relative distances between
the peaks in Fig. 6 correspond to the filling of the subsequent shells of the artificial atom.
The positions of these peaks can be qualitatively explained in the framework of the simple
model of the QD with the 2D, cylindrically symmetric, confinement potential. According to
this model, the larger separations observed between the second and third peaks, the sixth
and seventh peaks, and the twelfth and thirteenth peaks correspond to the complete filling
of the first, second, and third electronic shells of the the artificial atom, respectively. The
slightly larger separations, observed [7] between the 4th and 5th peaks and the 9th and
10th peaks, result from the filling of the subsequent subshells according to Hund’s rule
for the cylindrically symmetric confinement potential. The magnetic-field evolution of the
single-electron tunneling peaks was observed by Kouwenhoven et al. [23] (see Fig. 9). The
kinks on the plots (marked by the full symbols in Fig. 9) result from the magnetic-field-
induced ground-state transformations. The corresponding spin configurations are shown by
the arrows in the squares (see Fig. 9).
In Fig. 6, the intervals of the gate voltage corresponding to zero source-drain current

result from the Coulomb blockade. Then, the electrons confined in the QD prevent the flow
of subsequent electrons. With the increasing source-drain voltage, the Coulomb blockade
intervals shrink to zero. The corresponding experimental results [23] are shown in Fig. 8,
which shows the so-called stability diagram, that is, the positions of the differential conduc-
tance peaks on the Vds − Vg plane. The white, diamond-shaped regions correspond to zero
differential conductance (i.e., the Coulomb blockade). These Coulomb blockade regions are
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Figure 8. Differential conductance �I/�Vds plotted in gray scale on the Vg − Vds plane at B = 0. In the white
diamond-shaped regions, �I/�Vds 
 0 as a result of the Coulomb blockade. Number N of QD-confined electrons is
fixed in each of the diamond regions. Reprinted with permission from [23], L. P. Kouwenhoven et al., Science 278,
1788 (1997). © 1997, AAAS.
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also called the Coulomb diamonds. Number N of the QD confined electrons is fixed in each
of the diamond regions [23].
The single-electron tunneling peaks at high magnetic fields were measured by Oosterkamp

et al. [24] (see Fig. 10). If the magnetic field is sufficiently strong, the N -electron system
becomes fully spin polarized and the electrons occupy the orbitals with the subsequent angu-
lar momenta. This state is called the maximum-density droplet (MDD) [103]. If the magnetic
field increases further, the MDD decays and a Wigner molecule [104] is formed with an
island-like electron density distribution. Both the formation and decay of the MDD are
visible in Fig. 10 as abrupt steps marked by full and open circles. In the Wigner-molecule
regime, the additional steps were observed (the dotted oval in Fig. 10). The authors [24]
argued that at all these steps the electron charge distribution changes abruptly.

4. POISSON-SCHRÖDINGER PROBLEM
A theoretical description of the spectacular experimental discoveries of Ashoori et al. [6],
Tarucha et al. [7], and Kouwenhowen et al. [23] was the subject of many theoretical papers
[72–75, 84–88, 98]. In some of these papers, for example, in Refs. [72–75], the simple 2D
model with the parabolic confinement potential was applied. Such an approach neglects a
dependence of the confinement potential on the gate voltage and the QD-confined electrons
and simplifies the three-dimensional (3D) problem to the 2D one. The 2D models suffer
from the neglect of the third (z) dimension in which the transport of electrons occurs.
A reliable theory of the electrostatic QDs should derive the confinement potential from

the first principles of electrostatics. This theory should allow us to take into account the
dependence of the problem on all the relevant parameters of the nanodevice. Therefore, the
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theory of the electronic properties of the QDs should be based on a self-consistent approach
to a solution of the underlying Poisson-Schrödinger problem [83–88]. In this section, we
present such a theory elaborated in our group [84, 86, 88].

4.1. Electrostatic Fields in QDs

Excess electrons are confined in the electrostatically gated QDs by external fields that stem
from different sources. The vertical QD contains several layers made of different semicon-
ducting materials. The discontinuities of the conduction bands, which occur at the interfaces,
lead to potential jumps (band offsets) that form a potential-barrier/potential-well profile in
the z direction. As a result, we obtain either a single or multiple quantum-well structure.
Both in the two- and three-terminal vertical QDs [6, 7] the confinement in the vertical direc-
tion results from the band offsets. In the three-terminal QDs [7], the lateral confinement
(i.e., the confinement in the x� y directions), results from the electrostatic field, which is
created by the voltage applied between the gate and the source (drain) and by the ionized
donors in n-type semiconductor layers. In the two-terminal QD [6], the nonuniform electro-
static field is created below the GaAs cap as a result of moving away the central part of the
gate because of presence of the cap (see Fig. 2). This nonuniform field is a source of the
lateral confinement. Therefore, in the electrostatically gated vertical QDs, the external fields
acting on the electrons confined in the QD are of the band offset as well as electrostatic
origin.
The additional complication of the problem occurs because the electrostatic fields are

modified by the presence of the electrons in the QD. The electrostatic field, created by the
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electrons confined in the QD, induces the additional charge on the leads and causes the addi-
tional ionization of the donors in the n-type doped semiconductor layers. These effects lead
to a change of the total electrostatic field. The electrostatic field in the nanodevice modifies,
in turn, the quantum states of the electrons confined in the QD. Therefore, the theory of the
electronic properties of the electrostatic QDs requires self-consistency. Knowing the charge
density of the ionized donors and external voltages applied to the leads (i.e., the boundary
conditions), we can solve the Poisson equation and calculate the electrostatic potential from
external sources. The band-offset contribution does not depend on the charges in the system
and can be added to the electrostatic potential. The electrostatic potential depends on the
charge density distribution in the QD, which is determined by the electron wave functions.
These wave functions can be found by solving the Schrödinger equation. Therefore, we deal
with the self-consistent Poisson-Schrödinger problem.
Let us consider the main steps of the self-consistent procedure. They are illustrated in

block diagram (Fig. 11). The iterative procedure starts with the Coulomb potential of N
electrons treated, in the first step, as a single point charge. The Poisson equation is solved by
the finite-difference relaxation method for the electrostatic potential #1 in the nanodevice,
which enables us to determine the distribution of the ionized donors in the n-GaAs layers.
The calculated electrostatic potential is used as the external potential in the Schrödinger
equation, which is solved by the unrestricted Hartree-Fock (UHF) method [86]. As an output
of the Hartree-Fock approach, we obtain the one-electron wave functions and the ground-
state energy EN of the N -electron system confined in the QD. The knowledge of the one-
electron wave functions enables us to calculate the density of the confined charge and the
potential, #2, generated by this charge. Potential #2 is reintroduced via the outer iteration
loop (labeled by i) into the boundary conditions for the Poisson equation on surface �. The
iterations run until the convergence of the ground-state energy EN is reached. The iteration
procedure, depicted in Fig. 11, also contains the inner loop (labeled by n), in which the
charge density of the ionized donors is calculated. The inner loop is terminated if the self-
consistency of the confinement potential energy is reached. We note that the numerical steps

Figure 11. Block diagram of the self-consistent procedure for the solution of the Poisson and Hartree-Fock equa-
tions. #tot = % is the total electrostatic potential defined by Eq. (9). Equation (6) is equivalent to Eq. (13) in this
chapter. A more detailed description is given in the text. From Ref. [86].
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of the iterative procedure very well simulate the physical processes in the nanodevice, which
last until the electron system achieves the stationary state.
Here the theoretical approach [84, 86] is presented in more detail. The potential energy

of the electron confined in the QD is given by

Uconf�r� = Uband�z�+ Uelst�r�� (7)

where Uband�z� is the potential energy, which results from the band offsets (this is the single
potential well/potential barrier in the two-terminal QD [6] and the double-barrier potential
with the single-potential well in the three-terminal QD [7]), and Uelst�r� is the potential
energy of the electrostatic confinement

Uelst�r� = −e#1�r�� (8)

Electrostatic potential #1�r� stems from all the charges in the nanodevice, excluding the
charge confined in the QD. The main sources of the electrostatic field with potential #1�r�
are the ionized impurities and the charges on the leads. From the superposition principle,
we obtain total potential %�r� of the net electrostatic field

%�r� = #1�r�+ #2�r�� (9)

where #2�r� is the potential of the electrostatic field created by the electrons confined in
the QD.
Potential #1�r� is the solution of the Poisson equation

' 2#1�r� = −(D�r�
)0)s

� (10)

where (D�r� is the charge density of the ionized donors, )0 is the electric permittivity of
vacuum, and )s is the relative static electric permittivity of the nanostructure. For layer
nanostructures, )s changes across the interfaces; nevertheless, in the GaAs/AlGaAs–based
nanostructures [6, 7] these changes are rather small. Therefore, in a fairly good approxima-
tion, )s was taken [86, 88] to be that of GaAs (i.e., )s = 13�2). In order to solve the Poisson
equation, we have to put appropriate boundary conditions that include voltages applied to
the leads. In the calculations [86, 88], the boundary conditions were imposed on the total
potential %�r� and the boundary values of potential #1�r� were calculated from Eq. (9).
Potential #2�r�, which stems from the QD confined electrons, can be approximated by the

Hartree potential and is given by

#2�r� = −*e

)s

N∑
+=1

∫
d3r ′

�-+�r
′��2

�r − r′� � (11)

where * = 1/�4.)0� and -+�r� are the one-electron wave functions, which can be obtained
from the Hartree-Fock method [86]. In Eq. (11), the sum runs over all the occupied
one-electron states. The electrostatic field, created by the QD-confined electrons, which is
described by potential (11), acts mainly on the remote charges in the n-GaAs layers; there-
fore, it is screened by the static electric permittivity )s .
In the two-terminal nanodevice of Ashoori et al. [6], the donors reside in the AlGaAs

blocking barrier layer and in the n+-GaAs substrate. All the donors in the barrier layer
are ionized even at very low temperatures. For this layer, the charge density in Poisson
equation (10) is simply calculated as (D�r� = −enD, where nD is the donor concentration.
The donors in the substrate are ionized by the electrostatic field. This process was treated
[88] similarly as the ionization of donors in the three-terminal QD [7]. This ionization process
is described next.
In the three-terminal nanodevice of Tarucha et al. [7], there are several n-GaAs layers

with different donor concentrations. In equilibrium, the donor energy level (located ∼5 meV
below the GaAs conduction band bottom) is aligned with the Fermi energy of the source
and drain. Therefore, at the very low temperature, the donor ionization can only be caused
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by the electrostatic field acting at the donor site. This leads to the following donor ionization
condition: the donor center at position r becomes ionized if the potential energy of the
electron in the total electrostatic field, that is,

Utot�r� = −e%�r�� (12)

is larger than the electrochemical potential of the adjacent reservoir (source or drain). Then,
the electron goes over from the donor to the adjacent reservoir. If we take Fermi energy
F as the reference energy and put F = 0, we obtain [86] the donor ionization condition in
the form

(D�r� =
{−enD�r� if Utot�r� > −eVs�d��
0 otherwise�

(13)

where Vs�d� is the source (drain) voltage. Condition (13) allows us to determine the charge
density in Poisson equation (10) in all the n-type layers in the three-terminal QDs [7] and
in the substrate layer in the two-terminal QDs [6].
In the three-electrode QD [7], the electric-field-induced ionization of the donor occurs if

the electron potential energy in the electrostatic field at the donor site is sufficiently large
[see condition (13)]. Potential energy (12) depends on the confinement potential, which,
in turn, depends on number N of QD-confined electrons. When considering the single-
electron transport in the nanodevice [7], we deal with the problem of relaxation of the
charges induced in the nanodevice during the single-electron tunneling via the QD. The
theory in Ref. [86] is based on the assumption that the charge relaxation processes are slow.
This means that during the tunneling of the �N + 1�th electron the induced charges remain
in the quantum states, which were adjusted to the state of N electrons confined in the QD.
The slow relaxation leads to the following computational consequences: when determining
the conditions of the tunneling of the �N + 1�th electron through the QD, which consists
of the N excess electrons we should calculate both the energies EN+1 and EN—which define
chemical potential �N+1—with the same confinement potential (i.e., which correspons to the
presence of N electrons in the QD). Such an approach [86] leads to a good agreement with
the experimental data [7, 23].

4.2. Boundary Conditions

Poisson problem (10) is uniquely formulated if the boundary conditions are set at a surface
surrounding the integration domain. The boundary conditions should be imposed on total
potential %�r� [Eq. (9)], which allows us to include all the charges in the nanodevice [86, 88].
The boundary values of potential #1�r�, needed to solve Poisson equation (10), are calculated
from Eq. (9). For the electrostatic QDs, the boundary conditions at the surfaces of the
electrodes are determined by the voltages applied to them. For the three-electrode QD [7]
this leads to the following boundary conditions:

%�rsource� = Vs = 0� (14)

at the inner surface of the source (for convenience we set the source potential equal to
zero),

%�rdrain� = Vd ≡ Vds� (15)

at the inner surface of the drain, and

%�rgate� = Vg − /B/e� (16)

where Vg is the gate voltage and /B is the height of the Schottky barrier at the
semiconductor-metal interface. The Schottky barriers do not appear in the boundary con-
ditions for the source and drain electrodes because they are made of the heavily doped
n-GaAs, which form Ohmic contacts with the moderately doped n-GaAs adjacent layers.
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To obtain the boundary conditions on the cylinder side, which is not covered by a metal,
we assume that the electric field is parallel to the cylinder axis and solve the one-dimensional
Poisson equation [86]. This assumption is exactly satisfied for the cylinder with the infinitely
large radius. However, in the numerical calculations, we cannot use the infinite values. This
problem was solved in Refs. [86, 88] by performing a series of calculations for different
values of the radius of the cylinder, which limits the integration domain of the Poisson
equation. For the purpose of the final calculation, we had chosen the cylinder radius value
to be sufficiently large so that its further increase did not change the potential inside the
QD. In the numerical practice, it is sufficient to choose the radius of the integration domain,
which is three times larger than the radius of the cylindrical pillar in the nanodevice [6, 7].
The boundary conditions, calculated in such way for the two-electrode QD, are shown in
Fig. 12.

4.3. Numerical Integration of the Poisson Equation

For the vertical QDs with the cylindrical symmetry [6, 7], Poisson equation (10) reduces to(
�2

�r2
+ 1

r

�

�r
+ �2

�z2

)
#1�r� z� = −(D�r� z�

)0)s

� (17)

where r and z are the cylindrical coordinates. The cylindrical Poisson equation (17) was
solved [86, 88] by the finite-difference relaxation method on the two-dimensional grid �ri� zj�.
The numerical solutions, that is, #1�ri� zj�, allow us to calculate the electrostatic confinement
potential energy using formula (8).
Figure 13 shows the results for the two-electrode QD of Ashoori et al. [6], and Fig. 14

shows the results for the three-electrode QD of Tarucha et al. [7]. The lateral electrostatic
confinement potential energy, displayed in Figs. 13 and 14, denotes quantity Uelst [Eq. (8)]
calculated for z fixed inside the quantum-well layer and depicted as a function of radial
coordinate r . In each figure, the Fermi energy, represented by the thick solid curve, shows
the region of the QD occupied by the electrons. Figures 13 and 14 clearly show the effect
of the charge confined in the QD on the electrostatic confinement potential energy. In
both plots, we see the characteristic jumps of the potential energy. Each jump results from
changing the number of QD-confined electrons by one. The results of Figs. 13 and 14 can
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Figure 13. Lateral electrostatic confinement potential energy U = Uelst of the electron in the two-electrode QD as
a function of radial coordinate r , gate voltage Vg , and number N of QD confined electrons. The thick solid line
corresponds to the Fermi energy. From Ref. [88].

be interpreted as follows: the increasing (negative) gate voltage leads to a lowering of the
electron potential energy. This causes the binding of the subsequent electrons in the QD,
which, in turn, leads to a further stepwise lowering of the electron potential energy. In both
the two-terminal [6] and three-terminal [7] nanodevices, the dependencies of the electrostatic
confinement potential energy on number N of the electrons confined in the QD are similar
(see Figs. 13 and 14). The dependencies of the confinement potential on the gate voltage
and radial coordinate do not exhibit such similarity. They will be discussed in Section 6.

Figure 14. Lateral electrostatic potential energy U1 = Uelst of the electron in the three-electrode QD as a function
of radial coordinate 3 = r , gate voltage Vg , and number N of QD confined electrons. The thick solid line represents
the Fermi level. From Ref. [86].
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4.4. Hartree-Fock Method

The quantum states of the electrons confined in the QD are the solutions of the eigenvalue
problem with the N -electron Hamiltonian

H =
N∑
i=1

[
h�ri�+

N∑
j>i

*e2

)rij

]
� (18)

where

h�r� = − �
2

2me

' 2 + Uconf�r� (19)

is the one-electron Hamiltonian, me is the electron conduction band mass, ri is the position
of the ith electron, and rij = �ri − rj � is the interelectron distance. The electron–electron
repulsion, given by the second term in Eq. (18), is most effective for the electrons con-
fined within the QD (i.e., it acts at small interelectron distances). The theory of the
electron-LO-phonon coupling for the two-particle systems [105, 106] shows that the LO-
phonon-induced screening can be neglected at small interelectron distances. Therefore, we
screen this interaction by the high-frequency relative electric permittivity ).
The N -electron eigenequation with Hamiltonian (18) can be solved by the UHF method.

A detailed description of the UHF method applied to the N -electron QD is given in
Ref. [86]. When performing the UHF calculations, it is convenient to use the analytical form
of the confinement potential. The different analytical forms of the confinement potential,
fitted to the numerical solutions of the Poisson equation, are discussed in Section 6.
In the UHF calculations, the application of a Gaussian basis appears to be convenient.

For the cylindrical QDs, the one-electron UHF wave functions

-ns�r� =
∑
kxky

cns
kxky

gkxky
�r� (20)

are expanded in the Gaussian basis

gkxky
�r� = xkxyky exp8−��x2 + y2�− 9z2: � (21)

where cnskxky
are the linear variational parameters, � and 9 are the nonlinear variational

parameters, n denotes the set of orbital quantum numbers, and s is the spin quantum num-
ber. Depending on number N of electrons and the total angular momentum of the system,
different numbers of terms in expansion (20) were used [86].

5. QUANTUM COULOMB BLOCKADE

5.1. Theoretical Description of Single-Electron Tunneling

In the three-electrode nanodevice [7], a single electron can tunnel through the QD, which
confines �N −1� excess electrons, if the chemical potential of the resulting N -electron system
falls within the interval determined by the the electrochemical potentials of the source and
drain [condition (5)]. This interval is called a transport window. The width of the transport
window depends on the external fields (i.e., bias voltage Vds and gate voltage Vg). For volt-
ages Vds and Vg , for which single-electron transport condition (5) is not satisfied, the electron
tunneling is blocked and we deal with the Coulomb blockade [12]. The classical model [89]
of the Coulomb blockade is based on the charge quantization. According to this model [12],
the charging energy equal to e2/C is required to introduce the additional electron into the
QD of capacitance C. This model leads to equally spaced tunneling current peaks, which are
observed in large QDs as the so-called Coulomb oscillations. In the nanoscale regime, there
appear quantum effects: the energy levels of the QD-confined electrons are discrete and
are not equally spaced. Therefore, the charging energies are different for different numbers
of electrons and the single-electron tunneling peaks exhibit unequal spacings [7]. This is a
manifestation of the quantum nature of the Coulomb blockade [102].
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In the three-terminal nanodevice [7], the source and drain electrodes are composed of
the heavily doped n-GaAs layers and form the Ohmic contacts with the adjacent n-GaAs
layers of the intermediate doping. The n-GaAs layers, close to the undoped GaAs spacer,
are lightly doped with donors (see Fig. 4). Let us consider the single-electron tunneling
through the quantum states of N electrons localized in the QD. In this process, the donors
in the lightly doped n-GaAs layers, adjacent to the GaAs spacers, are the nearest located
centers, which can give up or take on the electrons. These nearest donor centers mediate
in the single-electron transport via the QD. Therefore, at low temperatures and zero bias,
the electrochemical potential of the source and drain can be identified with the ground-state
donor energy (ED) in the n-GaAs layers. Even at the very low temperatures, the electrons are
not frozen out in the donor states because of the considerable overlap between the weakly
localized wave functions of the electrons bound to the donor centers in GaAs. Therefore,
the small currents in the transport windows are carried via the overlapping donor wave
functions.
According to condition (5), the single-electron transport can occur even if the bias voltage

is negligibly small. For Vds = 0, the common Fermi energy of the source and drain is taken
as the reference energy and set equal to 0. Therefore, on the plot of chemical potential �N

versus gate voltage drawn for Vds = 0, the crossing point of �N with the abscissa determines
the value of the gate voltage, which corresponds to the tunneling of the single electron
via the QD. The results for the three-terminal QD are shown in Fig. 15. The theoretically
predicted [86] positions of the single-electron tunneling current peaks very well agree with
the experimental data [7], shown by the vertical lines in Fig. 15. The unequal spacings
between the subsequent peaks result from the filling of the electronic shells in the artificial
atoms. It can be seen from the upper panel of Fig. 15 that the distinctly larger separations
between the second and third peaks and the sixth and seventh peaks correspond to the
filling of the first and the second electronic shell, respectively. Moreover, the slightly larger
distances between the fourth and fifth peaks and the ninth and tenth peaks correspond to
the half-filled shells. These results can be treated as a quantitative proof that Hund’s rule is
satisfied for the artificial atoms [7].
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of the gate voltage and number N of the QD confined electrons, calculated for Vds = 0. The single electron can
tunnel through the QD if �N = F = 0. The measured positions of current peaks [7] are represented by the thin
vertical lines. From Ref. [86].
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The lower panel of Fig. 15 displays a gate voltage–to–energy conversion factor as a func-
tion of gate voltage. The conversion factor, defined as

�N�Vg� =
��N

�Vg

∣∣∣∣∣
Vds=0

� (22)

enables us to convert the measured gate voltage into the energy of the electron quantum
states. The conversion factor depends on number N of QD-confined electrons and the
gate voltage. We note that the conversion factor for the three-terminal nanodevice [7] is a
nonlinear function of the gate voltage. The calculated values of �N change between −0�07e
and −0�03e and show an overall agreement with the experimentally determined conversion
factor [7, 23]. In particular, the absolute values of �N decrease with N .
The single-electron tunneling in the two-electrode QD [6] takes place if condition (4) is

satisfied. The chemical potential calculated for the artificial atoms, for which the electronic
shells are closed (i.e., for N = 2� 6� 12, and 20), are depicted in Fig. 16. The positions of
the crossing points of chemical potential �N with the Fermi energy agree very well with the
experimental data [6].
Let us discuss a qualitative difference between the �N versus Vg dependencies for the

two- and three-terminal nanodevices displayed in Figs. 16 and 15, respectively. For the two-
electrode QD [6] the chemical potential is a perfectly linear function of the gate voltage (see
Fig. 16). As opposite, for the three-terminal nanodevice of Tarucha et al. [7], the chemical
potential is a highly nonlinear function of the gate voltage (see Fig. 15). In both nanodevices,
the chemical potential is a decreasing function of Vg . The results of Fig. 16 also allow us
to determine the conversion factor. It takes on the value of about −0�5e, which also results
from the geometry of the nanostructure [6] (the same value can be estimated from the lever
arm for the voltage drop). On the contrary, to the three-terminal nanodevice, the conversion
factor for the two-terminal nanodevice is independent of the gate voltage. We also note that
the absolute value of the conversion factor for the two-electrode QD [6] is by two orders
of magnitude larger than that for the three-electrode QD [7]. These differences result from
the different geometry of the three-terminal nanodevice [7], in particular, from the different
location of the QD region relative to the electrodes.
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The results for the three-terminal nanodevice [7] at nonzero drain-source voltage are
displayed on the stability diagram in Fig. 17. The shaded areas correspond to nonzero differ-
ential conductance measured by Kouwenhoven et al. [23]. The white diamond-shaped areas
correspond to the Coulomb blockade (i.e., the vanishing differential conductance [23]). The
solid curves show the calculated [86] boundaries between the gate and drain-source volt-
age regimes, which correspond to either zero or nonzero source-drain current. The curves
with positive and negative slope are the plots of �N+1 = �s and �N+1 = �d, respectively
[see tunneling condition (5)]. All the solid curves were obtained under assumption of the
tunneling through the corresponding ground state. The solid curves in Fig. 17 are in very
good agreement with the experimental data [23]. The only exception is the tunneling con-
dition, depicted by the solid curve for the eighth electron. However, it appeared that the
calculations [86] performed under assumption of the tunneling through the first excited state
of the eight-electron QD led to a better agreement with the experimental data [23] (see
dashed curves in Fig. 17). Therefore, we tentatively interpreted the experimental data [23]
for the eighth and ninth Coulomb diamonds (Fig. 17) assuming the single-electron tunneling
through the first excited state of the eight-electron QD. The calculated [86] boundaries of
the Coulomb blockade regimes, depicted by the solid and dashed curves in Fig. 17, very well
agree with the measured [23] positions, sizes, and shapes of the Coulomb diamonds.
We note that the very good agreement with the experiment was obtained in Refs. [86, 88]

with the use of the nominal values of the nanodevice parameters (i.e., composition, layer
thicknesses, and donor concentrations). Only the radius of the cylindrical pillar in three-
terminal QD [7] (the cap radius in the two-terminal QD [6]) was treated as a single adjusting
parameter [86, 88]. This radius can not be measured with the appropriate precision but is
merely estimated in the technological process from the radial size of the corresponding mask.
This was the reason for treating the cylinder radius in the three-terminal nanodevice [7] and
the cap radius in the two-terminal nanodevice [88] as the fitting parameters. Nevertheless, in
either case, the fitted values of these radii were in a good agreement with the corresponding
values estimated in the technological processes.
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Figure 17. Stability diagram with Coulomb diamonds. The calculated [86] boundaries of the single-electron tunnel-
ing via the N -electron ground states (first excited state) are plotted with the solid (dashed) curves. The shaded areas
represent the experimental data [23]. In the white diamond-shaped regions, the number N of the QD confined
electrons is fixed. From Ref. [86].
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5.2. Induced-Charge Density Distribution

The operation of nanodevices [6, 7] is strongly affected by the space charge distribution
of the ionized donors. The ionized-donor charge density distribution is hardly accessible in
experiments. However, it can be calculated in the framework of the self-consistent procedure
by solving the Poisson-Schrödinger problem (see Section 4). In the two-electrode QD of
Ashoori et al. [6] all the donors in the n-type doped AlGaAs barrier layer are ionized, and
the corresponding charge density distribution is uniform [88].
The situation is much more complex in the n+-GaAs substrate layer in the two-electrode

QD [6] and in all the n-GaAa layers in the three-electrode QD of Tarucha et al. [7]. The
ionized donor charge density distribution calculated [86] for the three-electrode QD is shown
in Fig. 18(a)–18(d). The white, gray, and dark gray areas correspond to the charge density
(D = 0� 1�0× 1017, and 1�4× 1017 8e/cm3:. The stepwise change of the ionized-donor charge
density results from the stepwise changing donor concentration in the subsequent n-GaAs
layers. Figure 18(a) and 18(b) show the results for Vg = −1 V and Vg = −2 V for the
empty QD (i.e., for N = 0). In this case, the space charge is induced by the gate voltage
only. The larger the absolute value of the gate voltage, the larger the range of the donor
ionization. The effect of the electrons confined in the QD is shown in Fig. 18(c) and 18(d)
for N = 12. The electrons confined in the QD induce the additional space charge in the
central region of the nanodevice. Figure 18(a), 18(b), and 18(c) are plotted for Vds = 0,
which results in an approximate symmetry of the space charge density distribution against
the inversion in the z = 0 plane. The slight asymmetry, caused by the small difference
in the barrier widths, is visible in the figures. The application of the bias voltage entails
the considerable asymmetry of the induced-charge distribution [see Fig. 18(d) for Vds =
50 mV]. The results of calculations [86] show that the ionized donors should appear in
only two n-GaAs layers in the three-electrode nanodevice of Tarucha et al. [7] [cf. Fig.
18(a)–18(d)].
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Figure 18. Charge density of the ionized donors in n-GaAs layers displayed in the vertical cross section of the
three-terminal nanodevice [7] as a function of cylindrical coordinates 3 = r and z. The white, gray, and dark gray
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Ref. [86].
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6. MODELING OF CONFINEMENT POTENTIALS

6.1. Three-Dimensional Profile of the Confinement Potential

The calculated [86, 88] 3D profile of the total confinement potential energy of the electron
is shown in Fig. 19 for the two-terminal nanodevice [6] and in Fig. 20 for the three-terminal
nanodevice [7]. Figures 19 and 20 show the total confinement potential energy of the electron
calculated according to Eq. (7) (i.e., with the band-offset contributions included). In Fig. 19,
the position of the Fermi energy marked by the thick solid curve, shows that in the two-
terminal nanodevice [6] there are two regions in which the excess electrons can be localized.
These are the QD regions and a part of the GaAs spacer close to the barrier layer. In the
three-terminal nanodevice [7], the electrons can be confined in the lowest-energy part of the
potential-well region between the two potential barriers. In this region of the nanodevice,
the physical QD is formed.

6.2. Lateral Confinement

Let us consider the lateral confinement potential profile, that is, the dependence of the con-
finement potential on cylindrical radial coordinate r for z coordinate fixed inside the potential
quantum well region. The lateral confinement potential energy is displayed in Figs. 13 and 21
for the two-electrode QD [6] and in Figs. 14 and 22 for the three-electrode QD [7]. It turns out
that the dependence of the lateral component of the confinement potential on the gate voltage is
different in both the nanodevices considered. In the two-terminal nanodevice [6], the curvature
of the lateral confinement potential remains unchanged when changing the gate voltage. On
the contrary, in the three-terminal nanodevice [7], the gate voltage strongly modifies the lateral
confinement. In Figs. 21 and 22, we have also depicted the numerical solutions of the Poisson
equation, the best analytical fits to these solutions, the parabolic fits, the electron charge density,
and the Fermi energy. In both the QDs, the parabolic approximations are fairly good in that
region of the QD, which corresponds to the electron energies below the Fermi level. The elec-
trons are localized in this region of the QD and only slightly penetrate the nonparabolic region
of the confinement potential. This partly justifies the commonly used parabolic approximation
[72–75]of theconfinementpotential.However, thenonparabolic correctionsdoplaya role in the
single-electron tunneling [84]. A more detailed study [84, 86] of the electrostatic confinement
potential in the central region of the three-terminal QD [7] shows that this potential can be very
well approximated by the six-order polynomial of the form

#̃1�r� =
3∑

m=0
vmr2m� (23)

Figure 19. Total confinement potential energy Utot = Uconf , Eq. (7), of the electron in the two-terminal nanodevice
as a function of cylindrical coordinates r and z. The thick solid line corresponds to the Fermi energy. From Ref. [88].
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Figure 20. Total confinement potential energy Uconf , Eq. (7), of the electron as a function of cylindrical coordinates
3 = r and z in the central region of the three-terminal nanodevice. From Ref. [86].

where coefficients v0, v1, and v3 strongly depend on the gate voltage and the geometry of
the nanodevice [86].
It is interesting to study the physical origin of the nearly parabolic shape of the confine-

ment potential [86]. The results of this study [86] are shown in Fig. 23. Electrostatic potential
#1 can be decomposed as follows:

#1 = #0 + #resp� (24)
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Figure 21. Lateral electrostatic confinement potential energy U = Uelst (left scale) of the electron confined in the
two-electrode QD as a function of radial coordinate r for z fixed inside the quantum-well layer for N = 1 and
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where #0 is the potential created by the leads if no electrons are confined in the QD (the
QD is empty) and #resp is the potential of the response of the nanodevice to the presence of
N electrons within the QD. Potential #resp takes into account the screening of the electro-
static field created by the QD-confined electrons through the charges induced on the leads.
Figure 23 displays the total electrostatic potential energy and its two components, which
stem from potentials #0 and #resp [see Eq. (24)]. We note that both the components are
strongly nonparabolic. According to Eq. (24), they sum up to the total electrostatic poten-
tial, which possesses the approximately parabolic shape. We conclude that the approximate
parabolicity of the lateral confinement potential results from the superposition of the two
nonparabolic potentials. Therefore, this is a nontrivial property of the confining potential.
The analytical formula for the confinement potential is very convenient when solving

the Schrödinger equation for the confined few-electron system. For example, we used form
(23) when solving the N -electron eigenproblem by the Hartree-Fock method [86]. Next, we
discuss other useful analytical formulas for the shape of the lateral confinement potential.
In Ref. [107], we introduced the power-exponential function, which allows us to model the
shape of the lateral confinement potential in the entire nanodevice. According to this model
[107], the lateral confinement potential energy has the shape

U�r� = −U0l exp8−�r/L�p:� (25)

where U0l is the depth of the lateral confinement potential energy, parameter L determines
the lateral range of the confinement potential and can be treated as a measure of the lateral
size of the QD, and power p (p > 1) is responsible for the steepness of the potential
near the QD boundary. If p increases, starting from the value slightly exceeding 1, through
p = 2 to the large values (p 
 100), function (25) models quasi-triangular, quasi-harmonic,
and quasi-rectangular potentials (Fig. 24). The variety of the confinement potential shapes,
obtained with power-exponential function (25), and the one-electron ground-state energy
levels, calculated with the 3D spherically symmetric potential (25) are displayed in Fig. 24.
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Model potential (25) can be generalized to the anisotropic form [107]

U�r� z� = −U0l exp8−�r/L�p − ��z�/Z�p:� (26)

where Z determines the range of the confinement in the vertical direction. The anisotropic
confinement potential (26) can be applied to the modeling of the 3D confinement in both
the electrostatic and self-assembled QDs. In particular, form (26) accounts for the different
potential range in the lateral and vertical directions. We note that the modeling of the
confinement potential, which is similar to that given by Eq. (25), can be obtained when using
the model potential of the form [108]

U�r� = U0l8�r/R�p − 1:� (27)

On the contrary, to power exponential (25), model potential (27) diverges for r → , that
is, becomes unphysical at the boundary of the nanodevice.
The modeling of the confinement potential profile with the use of formula (25) was per-

formed in Ref. [88] for the two-terminal QDs [6]. It appears [88] that by changing the cap
radius R we can obtain the confinement potentials with different shapes. Figures 25(a)–25(d)
display the lateral confinement potential energy calculated by the finite-difference numeri-
cal method from the Poisson equation and power-exponential function (25) fitted to these
numerical solutions. In Fig. 25(a) and 25(d), the fitted parabolic functions are also plotted.
Figure 25(a) shows the results obtained for the QD studied experimentally by Ashoori et al.
[6] for the gate voltage at which the first electron is bound in the atomic-like state [88].
The results of Ref. [88] demonstrate that in the two-terminal QD of Ashoori et al. [6] the
lateral confinement potential can be approximated by the parabola only near the center of
the QD for the small cap radius. In the large region of the QD, the confinement potential
strongly deviates from the parabolic form. Moreover, if the cap radius increases, the lateral
confinement potential becomes strongly nonparabolic, that is, more flat near the center of
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416 Modeling of Electrostatically Gated Vertical Quantum Dots

the QD and more steep at the QD boundary. For sufficiently large R [see Fig. 25(b)], the
confinement potential starts to resemble the rectangular potential well. This profile can be
obtained by fitting potential (25) with large values of power p and range L. In real QDs [91],
the flatness of the confinement potential causes that the electrons confined in the QD are
sensitive to the fluctuating electric fields created by the randomly distributed impurities. As a
result, the atomic-like energy levels of the QD-confined electrons are not well defined, which
leads to the bunching of the energy levels observed [91] by the single-electron capacitance
spectroscopy.
For small R [Fig. 25(c)] the confinement potential can be very well fitted over the entire

nanodevice by the Gaussian potential well [109]. It is also possible to model the profile of
the confinement to obtain the best parabolicity in the possibly large region of the QD. This
nearly ideal parabolic shape is shown in Fig. 25(d).
In each of the QDs studied in Fig. 25(a)–25(d), the values of R and L are very close to

each other. Since parameter L provides a direct measure of the physical size of the QD, the
approximate equality L 
 R means that cap radius R itself yields an accurate estimate of
the lateral spatial extension of the two-electrode QD [6].

6.3. Parabolic Confinement Potential

The results of Refs. [86, 88] show that in both the two- and three-terminal electrostatic QDs
[6, 7] the lateral confinement potential can be quite well approximated by the harmonic
oscillator potential. In particular, the parabolic approximation of the lateral confinement
potential is applicable in the central part of the QD with a small radius. The possibility
of application of the parabolic confinement is very convenient because, in this case, the
electronic properties of the QD can be simply predicted.
The parabolic approximation of the lateral confinement potential energy has the form

Ũ �r� = U0 +
meA

2
0

2
r2� (28)

where U0 determines the position of the potential-well minimum (measured in the vertical
direction [Fig. 12]), and confinement frequency A0 determines the shape of the confinement
potential near the minimum. The quantum of the harmonic oscillator energy (i.e., �A0), is the
energy of the lateral excitation and is usually called the lateral confinement energy. Quantities
U0 and A0 determine the electronic properties of the parabolic QD. The dependence of
these quantities on the parameters of the two-terminal nanodevice was studied in Ref. [88].
Next, we present some of the results of Ref. [88].
Figure 26 shows the dependence of U0 and �A0 on the gate voltage. In a good approxima-

tion, the confinement energy is constant when varying the gate voltage. Potential-well min-
imum U0 decreases almost linearly with increasing Vg . Therefore, for the two-terminal QD
[6], the gate voltage–to–energy conversion factor is nearly constant and equal to ∼ − 0�5e.
The dependencies displayed in Fig. 26 for the two-terminal QD of Ashoori et al. [6] are
qualitatively different from those obtained for the three-terminal QD of Tarucha et al. [7].
Because of its more complex geometry, the confinement energy in the three-terminal QD
[7] is strongly dependent on the gate voltage and decreases from 6.7 meV to 5.4 meV if
the number of the QD confined electrons increases from one to four. Moreover, in the
three-terminal QD [7], position U0 of the potential-well bottom is a nonlinear function of
the gate voltage [86]. As a consequence, the conversion factor is strongly dependent on the
gate voltage [86] (Fig. 15). In the two-terminal QD [6], the near independence of the con-
version factor on the gate voltage results from its simple, plane capacitor–like structure [88].
It is visible on Fig. 26 that the increasing doping entails the downward shift of the linear
functions U0�Vg�.
The effect of the donor doping is shown in Fig. 27. In the donor concentration regime con-

sidered in Ref. [88], both the vertical potential-well minimum and lateral excitation energy
are almost linear functions of the donor concentration. These linear dependencies can hardly
be expected without performing the calculations.
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scale) and lateral excitation energy �A0 (right scale) as functions of gate voltage Vg for several donor concentrations
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Figure 28 displays the dependence of U0 and �A0 on number N of the electrons con-
fined in the two-terminal QD [6]. The dependence of the nanodevice parameters on the
number of QD confined electrons for the two-terminal QDs [6] exhibits an essential qualita-
tive difference in comparison to that for the three-terminal QDs [7]. In the QD of Tarucha
et al. [7], U0 and �A0 are nonlinear functions of N . Figure 28 shows that in the QD of
Ashoori et al. [6] both the quantities U0 and �A0 are approximately linear functions of N .
The N -dependence of the nanodevice parameters results from the influence of the charge
induced on the leads and in the n-doped layers by the QD confined electrons. This effect
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radius R for the two-terminal nanodevice [6]. Symbols have the same meaning as in Fig. 26. From Ref. [88].
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considerably modifies the electronic properties of the QD. In the electrostatic QDs, the num-
ber of the QD-confined electrons is controlled by the gate voltage. Therefore, the differences
in the properties of both the types of QDs are translated into the different dependencies of
the nanodevice parameters on the gate voltage.
The cap radius dependence of the confinement potential parameters is very interesting

(Fig. 29). Figure 29 shows that the dependencies of both the lateral excitation energy and
vertical potential energy minimum on cap radius R are highly nonlinear. The minimum value
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Figure 29. Confinement potential energy minimum U0 (measured in the vertical direction), lateral confinement
potential well depth �U = U0l (left scale), and lateral excitation energy �A0 (right scale) as functions of cap radius
R for nD = 4�62 × 1017 cm−3 and Vg = −0�375 mV for the two-terminal nanodevice [6]. From Ref. [88].
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U0 of the vertical confinement potential energy quickly decreases with increasing R. Energy
�A0 of the lateral excitation is a nonmonotonic function of R and takes on the maximal
value �A0 
 7 meV at R = 65 nm, which corresponds to the nearly ideal Gaussian shape of
the lateral confinement potential [cf. Fig. 25(c)]. Figure 29 also displays quantity �U = U0l
[cf. Eq. (25)] (i.e., the depth of the confinement potential measured in the lateral directions),
which is responsible for the lateral confinement of electrons.
In general, the dependence of the confinement potential on the nanodevice parameters is

complex. When determining this dependence by computational methods, one has to repeat
the calculations for each nanostructure. An important property of the confinement potential
can be found by a simple scaling without performing the numerical calculations [110]. For
this purpose, we consider the radial Poisson equation (17). If we multiply all the coordinates
by factor k and simultaneously divide the charge density by k2, we obtain the electrostatic
potential as a function of the coordinates, expressed in the unit of length multiplied by k,
which is the same function of the coordinates as that for k = 1. We note that the multiplica-
tion of the coordinates by k is equivalent to multiplying by k all the geometric sizes of the
nanodevice. This scaling property applied to the parabolic QD means that we can obtain the
k times larger confinement energy if we build the nanodevice with k-fold-decreased linear
sizes and k2 times stronger doping of the barrier layer [110].

7. EFFECT OF EXTERNAL MAGNETIC FIELD
The application of an external magnetic field essentially modifies the electronic states in
the QDs [6, 23, 24]. In the increasing magnetic field, the ground state of the QD-confined
electron system undergoes the symmetry transformations, which are accompanied by the
abrupt changes of the ground-state energy. Therefore, these transformations can be treated
as phase transitions in the N -electron system. Especially interesting phases are created at
very high magnetic fields, at which the island-like charge-density distributions (i.e., Wigner
molecules) are formed. At the extremely high magnetic field, the spatial structure of the
Wigner molecule becomes the same as that of the classical point charge system [111].
The single-electron transport [23] and capacitance [6] spectroscopy measurements in the

external magnetic field yield a rich information about the symmetry of the confined electron
states, the localization of the electrons, and the relative strength of the electron–electron
interaction. In particular, the joint effect of the external magnetic field and the electric field
between the source and drain is one of the most interesting characteristics of the nanodevice
[23, 24]. This joint magnetic- and electric-field effect on the single-electron transport was
studied experimentally by Kouwenhoven et al. [23] and theoretically by us [98].
In the presence of the external magnetic field, the one-electron Hamiltonian (19) acquires

the additional terms, that is, takes on the form

h�r� = − �
2

2me

' 2 + Uconf�r�+
meA

2
c

8
�x2 + y2�+ �Ac

2
lz +

1
2
g∗�BBBz� (29)

where Ac = eB/me is the cyclotron frequency for magnetic field B = �0� 0� B�, lz is the
operator of z component of angular momentum, g∗ is the effective Lande factor, �B is the
Bohr magneton, and Bz is the Pauli spin z matrix. The last term in Eq. (29) leads to the spin
Zeeman splitting. For GaAs at the magnetic field, not exceeding few tesla this term yields
the energy contribution, which is much smaller than that of the other terms and is usually
neglected. However, at higher magnetic fields, the spin Zeeman energy has to be included.
To determine the conditions of the single-electron tunneling [cf. conditions (4) and (5)], we

apply the same self-consistent procedure as that presented in Section 4, with the N -electron
Hamiltonian modified according to Eq. (29). In Ref. [98], the UHF method with the one-
electron wave function expanded in the Gaussians [cf. Eqs. (20) and (21)] was implemented
for the three-terminal nanodevice [7].
Let us comment on the electric field dependence of the problem [98]. One-electron

Hamiltonian (29) does not include the electric field. However, the effect of this field was
taken into account in an indirect way via the boundary conditions put on the electrostatic
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potential on the source, drain, and gate when solving the Poisson equation. The direct effect
of the bias voltage (i.e., the potential energy drop between the source and drain), was shown
in Ref. [98] to be reduced to the corresponding change of energy within the thin central
region of the nanostructure and was estimated [98] to be smaller than ∼1 meV. Such a drop
of the potential across the width of the QD is too small to deform the wave function of
the vertical size-quantized motion. Therefore, the direct influence of the bias voltage was
neglected in Ref. [98].
The magnetic-field effect on the first two capacitance peaks is shown in Fig. 30 for the two-

electrode QD [6]. These peaks correspond to the QDs with one and two confined electrons
for which the Schrödinger equation was solved with an arbitrary accuracy by the imaginary-
time method [112, 113]. Therefore, the results of Fig. 30 are not affected by the electron
correlation and can be treated as “exact” [88]. The agreement of the results of calculations
[88] with the experiment [6] is good, although some deviations at high magnetic fields are
visible. These deviations can result from some additional effects, neglected in Ref. [88] (e.g.,
a dependence of the Schottky barrier on the magnetic field [88]).
For the QDs subject to the external magnetic field, the plots obtained by both the single-

electron capacitance spectroscopy (Fig. 7) and transport spectroscopy (Fig. 9) led to a discov-
ery [6, 23] of the phase transitions in the QD confined electron system. The plots in Figs. 7
and 9 in fact show the chemical potentials of N -electron artificial atoms as functions of the
magnetic field. The chemical potential is calculated as the difference between the corre-
sponding ground-state energies [see Eq. (3)]. Therefore, we find the magnetic-field-induced
phase transition if the ground-state energy exhibits a jump, which results in a kink of the
chemical potential. For example, in Fig. 30, the kink for N = 2 at B 
 2 T corresponds to the
singlet-triplet phase transition. It is seen that the calculated [88] and measured [6] positions
of this kink very well agree (i.e., the calculations [88] reproduce this phase transition).
The influence of the magnetic field on the chemical potential of the three-electrode QD

is depicted in Fig. 31. For Vds = 0, the electrons occupy the QD energy levels up to the
common electrochemical potential of the source and drain (i.e., up to the Fermi level),
which corresponds to zero on the energy scale (Fig. 31). The chemical potential of the
QD-confined electron system changes stepwise when changing the number of the confined
electrons by one (see steps in Fig. 31). The cusps on the steps in Fig. 31 correspond to the
magnetic-field-induced phase transitions. The results of Fig. 31 can be translated into the
positions of the single-electron current peaks on the Vg −B plane (Fig. 32) by using the con-
version factor [Eq. (22)]. Figure 32 shows the magnetic-field dependence of the gate voltage,
which corresponds to the boundaries of the transport windows for small bias (Vds = 0�1 mV).
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function of magnetic field B. The squares mark the experimental data [6]. From Ref. [88].
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Figure 31. Chemical potential �N of N electrons confined in the QD as a function of magnetic field B and gate
voltage Vg for drain-source voltage Vds = 0. Zero on the energy scale corresponds to the Fermi energy. From
Ref. [116].

At this bias, the single-electron transport conditions [Eq. (5)] are satisfied only within the
very narrow stripes (i.e., inside the solid lines in Fig. 32). In the other areas of the Vg − B
plane, the Coulomb blockade occurs. The kinks in Fig. 32 correspond to the phase transi-
tions that appear between the different N -electron ground states. The occupied one-electron
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Figure 32. Transportwindowsas functionsofgatevoltageandmagneticfield forVds = 0�1 mV.Thesolid(dashed)curves
show the calculated [98] (measured [23]) gate voltage at which the single electrons tunnel through the QD. NumberN
ofQD confined electrons is fixed in the Coulomb blockade regions and oscillates betweenN − 1 andN in the transport
windows. The ground-state orbitals are denoted by the appropriate symbols (see the description in the text). The thin
solid lines separate the regions corresponding to the differentN -electron ground states. FromRef. [98].
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orbitals are denoted by symbols s� p� d� f , and g, which correspond to the z component
angular-momentum quantum numbers m = 0� 1� 2� 3, and 4, respectively. The “±” signs in
the subscripts are the signs of the angular-momentum z-component. In each N -electron
ground state, the total spin z component, Sz, takes on the maximal value, which is allowed
for the given orbital. The last phase transition (i.e., at the highest magnetic field), leads to
the fully spin-polarized state, that is, Sz = � for N = 2, Sz = �3/2�� for N = 3, and so on.
Single-electron transport condition (5) contains the chemical potential, which, in this section,
is the difference of the N - and �N − 1�-electron ground-state energies. Therefore, the N -
electron ground-state energy EN enters twice into the transport conditions for �N − 1�- and
N -electron QDs. Therefore, each ground-state transformation is observed two times on the
plots in Fig. 32. The points, which correspond to the same phase transition, are connected
by the thin straight lines in Fig. 32. The results of calculations [98] fairly well agree with
experimental data [23]. We note that calculations [98] were performed under assumption
that the single-electron tunneling occurs via the weakly localized donor states in the n-GaAs
layers.
The results shown in Fig. 32 illustrate the situation when the transport windows are only

slightly open. The application of the larger bias entails the wider opening up of the transport
windows. The results of calculations [98] for Vds = 1 mV and Vds = 3 mV are displayed in
Fig. 33(a) and 33(b), respectively. In these figures, the solid and dotted curves correspond
to the processes described by transport conditions (5) with equality signs for which the QD
chemical potential is aligned with the electrochemical potential of the drain and source,
respectively. In the Coulomb blockade regions (gray areas), the number of electrons confined
in the QD is fixed (i.e., N = const), while in the transport windows (white areas), the number
of bound electrons oscillates between N − 1 and N . The results of Fig. 33(a) and 33(b)
exhibit a very good qualitative and reasonable quantitative agreement with experiment [23].
Figures 32 and 33 show that the transport windows open up (the Coulomb-blockade regions
shrink) with the increasing drain-source voltage.
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Figure 33. Transport windows (white areas) and Coulomb blockade regions (gray areas) as functions of gate volt-
age and magnetic field for drain-source voltage. (a) Vds = 1 mV and (b) Vds = 3 mV. The solid (dashed) curves
show the calculated [98] gate voltage, for which the chemical potential of the N -electron QD is aligned with the
electrochemical potential of the drain (source). In (a) the ground-state orbitals are denoted by the symbols, defined
in the text, and the thin solid lines connect the points corresponding to the same ground-state transformation. In
(b) the thin vertical lines connect the boundaries of the subsequent transport windows. Number N of QD confined
electrons is fixed in the Coulomb blockade regions. The symbols in the transport windows show how N oscillates
during the single-electron tunneling. From Ref. [98].
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8. CORRELATION EFFECTS
When studying the correlation effects [114, 115], the results of the restricted Hartree-Fock
(RHF) method are treated as reference data, since the electron–electron correlation is com-
pletely neglected in the RHF method. However, the unrestricted UHF method takes into
account a part of the correlation [114, 115]. The calculations [86, 98] for the three-electrode
QD were performed with the help of the UHF approach. In this section, we ask, how the
incorporation of the correlation into the calculations will change the results obtained in
Refs. [86, 98]? Theoretical studies of the correlation effects have been performed (e.g., in
Ref. [116] for the single QD and in Refs. [114, 117] for the coupled QDs). For the systematic
study of the correlation effects in few-electron system, the configuration interaction (CI)
method can be applied [116, 117].
For the cylindrical QD, the one-electron wave functions for quantum state + can be

expanded [116] in the Gaussian basis [cf. Eqs. (20) and (21)]:

-+�r� =
kx+ky≤K∑
kx�ky=0

c+
kxky

xkxyky exp8−��x2 + y2�− 9z2:� (30)

where � and 9 are the nonlinear variational parameters and K determines number M of
basis elements as follows: M = �K + 1��K + 2�/2. The Slater determinants, constructed
from one-electron wave functions (30), form the basis for the diagonalization of the N -
electron Hamiltonian by the CI method. In the cylindrical QD, in the presence as well as in
the absence of the external magnetic field, the N -electron eigenstate possesses the definite
z components of both the total angular momentum and total spin, which will be labeled
by the corresponding quantum numbers �L� S�. Basis (30) with M elements allows for a
construction of the following number of Slater determinants with definite L and S:

NS =
(
�K + 1��K + 2�

N

)
� (31)

The calculations [116] were performed for N = 2, 3, and 4 electrons and angular-momentum
quantum numbers L = 0� � � � � 6. At zero magnetic field, the systems with N = 2� 3, and
4 electrons are in the ground states with the corresponding quantum numbers �L� S� =
�0� 0�� �1� 1/2�, and (0,1). The total numbers of Slater determinants, used in calculations
[116], were NS = 70� 377, and 2174 for N = 2� 3, and 4, respectively. For these numbers
of the Slater determinants [116], basis (30) with M = 21 elements ensures the accuracy
∼0.01 meV. Because of this high accuracy, the CI results can be treated as “exact.”
The CI method was applied [116] to both idealized and real QDs. The idealized QD is

described by the parabolic lateral confinement potential

Ũ �x� y� = meA
2
0

2
�x2 + y2�� (32)

where A0 is the confinement frequency. The lateral confinement potential in the three-
electrode QD of Tarucha et al. [7] can be approximated by the parabolic form with
�A0 
6 meV for N ≤ 4.
In the single-electron transport spectroscopy, the quantity of crucial interest is the chemi-

cal potential of the electrons confined in the QD. Figure 34(a)–34(c) display the few-electron
chemical potentials calculated by the CI and HF methods [116]. In Ref. [116], the spin-
unrestricted spatial-restricted HF method was applied, that is, the wave functions used in
the calculations were the eigenfunctions of the z angular momentum, but it was not required
that the orbital wave functions be the same for the opposite spins. The plots are drawn for
the weak (�A0 = 2 meV), intermediate (�A0 = 6 meV), and strong (�A0 = 10 meV) con-
finement. For the weak confinement [see Fig. 34(a)], the HF results are unreliable both
quantitatively and qualitatively. The HF approach predicts the incorrect symmetry of the
ground state, for example, the low-spin state (2, 0), which is the true ground state of the
four-electron system over a wide range of the magnetic field, was erroneously predicted to
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Figure 34. Chemical potential �N calculated with the confinement energy (a) �A0 = 2 meV, (b) �A0 = 6 meV, and
(c) �A0 = 10 meV, as a function of number N of QD-confined electrons and magnetic field B. The solid (dashed)
curves show the results obtained by the CI (HF) method. Quantum numbers �L� S� correspond to the ground state.
The arrows up (down) show the magnetic-field-induced transformations obtained with the CI (HF) method. From
Ref. [116].

be the excited state in the HF method. The HF method usually prefers the high-spin state
to be the ground state of the system because it works better for the spin-polarized systems.
The results for the intermediate confinement are displayed in Fig. 34(b). This confinement

corresponds to the three-electrode QD of Tarucha et al. [7]. The agreement between the
HF and exact results is much better than in Fig. 34(a). Because of the higher accuracy of
the HF method for the high-spin states, the critical magnetic fields for the phase transitions
into these states are underestimated. However, in the intermediate-confinement regime, the
HF results are in a qualitative agreement with the exact results [116].
For the strong confinement (Fig. 34[c]), a fairly good quantitative agreement of the HF

and exact results was obtained [116]. The reliability of the HF method for the strongly
confined electron systems results from the smallness of the correlation in the high-density
electron systems. The strong confinement occurs in the self-assembled QDs [5].
In the high-magnetic field regime, the HF results are very close to the exact results [cf.

Fig. 34(a)–34(c)]. At the sufficiently high magnetic field, the electron system becomes fully
spin polarized, that is, it goes over into the MDD phase. It appears that the HF method
yields the accurate results for the MDD phase.
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The effect of the correlation on the single-electron transport through the real QDs
was also studied in Ref. [116]. For this purpose, the CI method was introduced into the
self-consistent procedure [86] for solving the Poisson-Schrödinger problem for the vertical
three-electrode QD [7]. The charge density of the electrons confined in the QD was still
determined by the UHF method, which is justified because the charges outside the QD
region perceive the electrostatic field, which stems from the mean charge density of the QD
confined electrons. The CI method was applied [116] to the calculation of the ground-state
energy of the N -electron system confined in the QD. This approach leads to the increase
of the accuracy of the ground-state energy calculations. The improved results [116] are
shown in Fig. 35 (for the single-electron transport in the magnetic field) and Fig. 36 (for
the stability diagram). Figure 35 shows the magnetic-field dependence of the gate voltage at
which the single-electron tunneling occurs. The cusps on the curves in Fig. 35 correspond
to the magnetic-field-induced ground-state transformations in the QD-confined N -electron
system. The CI results much better reproduce the experimental data [23]. The HF method
underestimates the critical magnetic fields for the ground-state transformations. Therefore,
in the external magnetic field, the electron–electron correlation considerably affects the
single-electron transport because the critical magnetic fields are directly determined by
the N -electron ground-state energy, which includes the correlation correction. However,
the single-electron transport conditions [Eq. (5)] are determined by the N -electron chemical
potential, which is calculated as the difference of the ground-state energies. If these energies
are calculated with a comparable accuracy, the errors cancel out and the chemical poten-
tial is determined with the sufficient precision. This effect is visible on the stability diagram
(Fig. 36). The boundaries of the Coulomb diamonds, calculated by the CI and HF meth-
ods, differ only slightly. This explains the very good agreement with experiments obtained
in Ref. [86] by the HF method [see Fig. (17)].
We conclude that the electron–electron correlation has a diverse influence on the elec-

tronic properties of the electrostatic QDs: it considerably affects the energy spectra and
the critical magnetic fields for the ground-state transformations in the external magnetic
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Figure 35. Gate voltage corresponding to the current peaks at very small source-drain voltage as a function of the
magnetic field for different numbers N of QD-confined electrons. The solid, dashed, and dotted curves show the
CI results, HF results, and experimental data [23], respectively. From Ref. [116].
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Figure 36. Stability diagram with Coulomb diamonds. Solid (dashed) curves show the boundaries of the Coulomb
diamonds calculated by the CI (HF) method. The white and shaded areas correspond to the experimental data
[23]. From Ref. [116].

field but only slightly modifies the single-electron transport observed in a function of the
source-drain voltage.

9. WIGNER MOLECULES

9.1. Wigner Localization

For sufficiently low density, the electrons can form Wigner phases with spatially ordered
structures. The Wigner phases comprise the Wigner crystals (in many-electron systems) and
Wigner molecules (in few-electron systems). A formation of the crystalline phase from the
low-density electron liquid was theoretically predicted by Wigner [118]. In the 2D space
(e.g., on the surface of liquid helium [119]), the Wigner crystal with a triangular (hexagonal)
lattice is created. The Wigner molecules can be created in the low-density electron system
confined in the QD [104, 120, 121]. The Wigner molecule, also called the electronic molecule
[8], is a strongly correlated phase of the QD-confined electron system in which the electrons
are localized at separate centers forming an island-like, spatially ordered structure. It is
interesting that the quantum electron system in the Wigner phase exhibits the quasi-classical
properties. In particular, the spatial ordering of the electrons correspond to that in the
classical systems of point [111] or spread-out [122] charges. An application of an external
magnetic field yields more favorable circumstances for the creation of the Wigner molecules
[8, 121, 123–125].
The magnetic field applied to the QD induces several ground-state transformations

[98, 124] connected with the rapid changes of the spin-orbital configurations and the sym-
metry of the electron-density distribution. If the magnetic field is sufficiently strong, the
electron system becomes fully spin polarized. In the cylindrical QD, the electrons occupy the
subsequent angular-momentum one-particle orbitals forming the MDD [103, 124, 126, 127].
In the MDD phase, the electron-density distribution possesses the cylindrical symmetry
(i.e., the same symmetry as the confinement potential). If the magnetic field increases fur-
ther, the MDD phase decays into the Wigner molecule. In the Wigner-molecule phase, the
electron-density distribution, determined as a function of relative electron–electron coor-
dinates, exhibits the island-like structure with the electrons localized around separate spa-
tial sites. Therefore, in the relative coordinates, the confinement-potential symmetry of the
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MDD breaks down with the subsequent formation of the Wigner molecule. In the very high
magnetic-field regime, that is, at the magnetic field exceeding that corresponding to the
MDD decay, phase transitions were predicted [124] between different phases (isomers) of
the Wigner molecule. The high-field experimental results [23] clearly demonstrate the MDD
decay and indicate on the possibility of the phase transitions in the Wigner-molecule regime.
We present a theory of Wigner molecules based on Refs. [124, 128–130].

9.2. Circular Quantum Dots

We consider N electrons confined in a 2D parabolic QD subject to the magnetic field
B = �0� 0� B�. If the spin polarization of the N -electron system is complete, the N -electron
Hamiltonian has the form

H =
N∑
i=1

(
h�ri�+

N∑
j>i

*

)srij

)
− N

2
g∗�BB� (33)

where the one-electron Hamiltonian is given by

h�r� = 1
2me

�−i�' + eA�2 + Uconf�r�� (34)

In Eq. (33), r = �x� y�, and the last term is the Zeeman energy of N spin-polarized electrons.
The confinement potential is assumed in the parabolic form, given by Eq. (32). The calcula-
tions [124, 128–130] were performed in the Landau gauge, that is, for A = �−By� 0� 0�, with
the GaAs material parameters.
It is convenient to apply the multicenter Gaussian basis [124, 129, 131, 132] to a descrip-

tion of the Wigner molecules. The multicenter basis can be applied when using both the HF
[124, 128, 129] and CI [130] methods. In this basis, the one-electron wave function for state
+ is expanded as follows [124, 128–130]:

G+�r� =
M∑
i=1

c+
i -Ri

�r�� (35)

where one-electron wave function

-R�r� =
( �

2.

)1/2
exp

[
−�

4
�r − R�2 + i9

2
�x −X��y + Y�

]
(36)

corresponds to the Gaussian electron-density distribution centered at point R = �X�Y �. In
Eq. (35), M is the number of centers, taken as M = N in the HF method [124, 128, 129]
and M > N in the CI method [130]. In the HF method applied in Refs. [124, 128, 129], it
was not required that the wave functions reproduce the symmetry of the external potential.
In Eq. (36), � and 9 are the nonlinear variational parameters. For

� = 9 = meAc

�
� (37)

function (36) is the eigenfunction of the lowest Landau level with energy

EL
0 = 1

2
�Ac� (38)

where Ac = eB/me is the cyclotron frequency. However, if we substitute

� = 2meJ

�
� (39)

where

J =
√

A2
0 +

A2
c

4
� (40)
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and 9 given by Eq. (37), function (36) is the eigenfunction of the Fock-Darwin ground state,
which is the lowest-energy eigenstate of the electron in the magnetic field and the parabolic
confinement potential centered at point R. The energy of this state is given by

EFD
0 = �J� (41)

In calculations [124, 128–130], position vectors Ri in Eq. (35) were treated as variational
parameters and the total energy of the N -electron system was optimized with respect to Ri.
In the HF method [124, 128], for which M = N , position vectors Ri were taken on as scaled
positions of the classical Wigner molecule, that is, the system of classical point charges in
the parabolic confinement potential with confinement frequency J. In this case,

Ri = BRclassi � (42)

where Rclassi are the equilibrium positions of the classical point charges and scaling parameter
B is the third nonlinear variational parameter. The calculations in Ref. [130] were performed
by the CI method with M = 3N and 4N . In this approach [130], more flexibility was allowed
on the choice of position vectors Rclassi .
In the study of the qualitative properties of the Wigner molecules, the HF approach with

M = N and � = 9 provides reliable results [124, 128]. A certain improvement of the results
was obtained with � �= 9 [129]. To distinguish different spatial configurations (isomers) of
the Wigner molecules, it appears to be useful to apply the classical notation [111]. This
notation [111] determines the spatial configuration of the classical point charge system, which
corresponds to either the global or local minimum of the potential energy. Accordingly, we
denote the different isomers of the Wigner molecule by N1 − N2 − N3 i.e., where N1, N2,
and N3 are the numbers of electrons, which occupy the inner, middle, and outer shells,
respectively, whereby N1 + N2 + N3 = N . If only two shells are occupied, we label the
corresponding isomer by N1 −N2 and omit zero for the unoccupied outermost shell.
Figure 37 shows the ground-state energy and the electron-density distribution for the six-

electron Wigner molecule. It is seen that the MDD phase is stable for the magnetic fields B <
5 T, at B 
 5 T the MDD decays, and the Wigner molecule is formed in the form of isomer

Figure 37. Ground-state energy E of the six-electron MDD (dotted curve) and Wigner-molecule isomers 0–6 (solid
curve) and 1–5 (dashed curve) as functions of magnetic field B. Insets: Electron density on the x–y plane for these
phases (length in nm). From Ref. [128].
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Figure 38. Energy difference �E between the ground-state energies of the different 10-electron phases and the
ground-state energy of high-field Wigner-molecule phase 2–8 (dashed horizontal line) as a function of magnetic
field B. The dotted curve depicts the results for the MDD. Insets: Electron density distribution on the x–y plane
(length in nm). From Ref. [128].

0–6. At B 
7 T, the Wigner molecule undergoes the phase transition, after which isomer
1–5 becomes most stable. The results for the 10-electron system are depicted in Fig. 38. The
decay of the 10-electron MDD leads to the formation of the 0–10 Wigner-molecule isomer.
In the increasing magnetic field, this isomer transforms into the 1–9 isomer, which, in turn,
goes over into high-field isomer 2–8.
Figure 39 shows the phase diagram for the Wigner molecules with N = 2� � � � � 20 electrons

obtained with basis wave functions (36) with � �= 9. According to the phase diagram (Fig. 39),

Figure 39. Phase diagram for N -electron Wigner molecules. The lowest-energy isomers are shown as a function of
magnetic field B and number N of QD confined electrons. The MDD stability region is located at the left part of
the plot. The star indicates that for N = 19 the 1–6–12 isomer is created at B = 15�8 T. The results plotted have
been obtained with variational parameters � �= 9 in wave function (36), which resulted in some modification of the
phase diagram obtained with � = 9 (see Fig. 5 in Ref. [124]).
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Figure 40. Inaccuracy of the Hartree-Fock method for the ground-state energy of the systems with N = 2 (solid
curve), 3 (dashed curve), and 4 (dash-dotted curve) electrons as a function of 1/B, where B is the magnetic field.
The dotted line shows the high-field asymptote for N = 2, parameterized as 4�028/B [meV/T]. Reprinted with
permission from [129], B. Szafran et al., Eur. Phys. J. D 28, 373 (2004). © 2004, EDP Sciences.

the Wigner molecule with N ≥ 6 electrons can exist in more than one phase. The phase
transitions [124, 128] exhibit a certain regularity. In the first isomer formed after the decay
of the MDD, the electrons prefer to occupy the outer shells. In the next isomers created at
higher magnetic fields, the increasing number of electrons starts to occupy the middle and
inner shells. The spatial configuration of the N -electron Wigner-molecule isomer, formed at
the extremely high magnetic field, is the same as the equilibrium configuration of N equally
charged classical particles. At the finite magnetic field, the average interelectron separations
are different in the quantum and classical systems [128]. However, in the limit of the infinite
magnetic field, the average electron–electron separations in the quantum Wigner molecule
become equal to those in the classical point-charge system [128]. Therefore, when applying
the external magnetic field to the electron system confined in the QD, we can observe a
continuous transition from the quantum to classical behavior. In the same limit (i.e., B →
), the HF method becomes exact. The HF inaccuracy is plotted in Fig. 40 versus 1/B for
N = 2� 3, and 4. We see that the HF inaccuracy for N = 2 is proportional to 1/B, and the
results for N = 3 and 4 exhibit a similar tendency.
In the literature, two different mechanisms of the MDD decay were proposed

[126, 127, 133]. According to Reimann et al. [126, 127], the MDD starts to decay at the edge
of the droplet. In this process, called the edge reconstruction, a ring of electrons separates out
from a flat density maximum [126, 127]. However, Yang and MacDonald [133] argued that the
MDD breaks down when a hole appears in the electron- density at the center of the QD. Both
these mechanisms are visualized in Figs. 38 and 41. Inset of Fig. 38 clearly shows the hole in
the electron-density distribution of the isomer 0–10 formed after the MDD breakdown. The
results of Fig. 41 for B = 6 T correspond to the edge reconstruction. These results [128] lead
to a conclusion that both the mechanisms can be effective if the MDD breaks down. We sug-
gested [128] that for the electron systems with N ≤ 12 the central-hole formation mechanism
is preferred, while for N > 12, the MDD begins to decay from the edge.
The physics behind the MDD decay and the creation of the Wigner molecule can be well

illustrated by considering the electron–electron interaction as a function of the magnetic
field. Figure 42 displays the expectation value of the interaction energy among all the elec-
trons in the six-electron system. In Fig. 42, the sharp, pronounced peak of the interelectron
interaction energy as a function of external magnetic field corresponds to the MDD-Wigner
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N = 20

Figure 41. Electron-density distribution on the x–y plane for N = 20 electrons for several magnetic fields. Length
is measured in nanometers. From Ref. [128].

molecule phase transition. In the MDD magnetic-field regime, that is, at the magnetic fields
below the peak position, the electron–electron interaction rapidly increases with the increas-
ing magnetic field, which results from the quickly decreasing interelectron distances due to
the squeezing of the electron system by the high magnetic field. At a certain magnetic field,
the electron–electron repulsion becomes so strong that the MDD breaks down. Then, the
MDD charge distribution, which is almost uniform over a wide spatial range, goes over into
the island-like molecular-type distribution, which minimizes the total energy. In the molecu-
lar phase, the electron-electron interaction energy rapidly falls down for the magnetic fields
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just above the MDD decay and quickly becomes a slowly varying function of B, which asymp-
totically reaches the high-field value. The position of the peak of the interaction energy
(Fig. 42) can be used to determine the critical magnetic field for the decay of the MDD
[128]. In the high-field limit, the quantum mechanical expectation value of the interelectron
interaction energy tends to the corresponding classical interaction energy (see Fig. 42).
The classical behavior of the Wigner molecules at the extremely high magnetic fields is

also demonstrated in the inset of Fig. 42, which displays the difference �E of the energies
of the 1–5 and 0–6 isomers. It is seen that �E asymptotically reaches the corresponding
classical value marked by the horizontal dashed line.
The MDD decay and the formation of different isomers of the Wigner molecule result

from the competition between the electron–electron repulsion, the exchange interaction, and
the magnetic-field influence. The estimation of the first two effects is shown in Fig. 43 [128].
The expectation value of the electron–electron interaction energy is equal to Hartree energy
�VC� of the interaction between the two Gaussian electron charge densities. In contrast to
the Coulomb repulsion, the Hartree energy is nonsingular at zero interelectron distance.
At intermediate interelectron distances the Hartree repulsion is stronger than the Coulomb
repulsion and approaches the Coulomb interaction between the two classical point charges
when R → . The exchange interaction rapidly falls down to zero and vanishes for large
R. Therefore, at large distances, the two electrons interact as the classical point charges.
For higher magnetic fields, the effective electron–electron interaction becomes classical for
smaller interelectron separations [128]. This confirms the quasi-classical behavior of the
Wigner molecules at extremely high magnetic fields [128].
Let us discuss the problem of symmetry breaking in Wigner molecules. The electron sys-

tem confined in the circular QD should possess the rotational symmetry because it is subject
to the confinement potential and magnetic field, both of which possess the same circular
symmetry. Therefore, the ground state of the Wigner molecule is infinitely-fold degenerate
with respect to the rotations around the z-axis. By rotating the molecular charge density dis-
tribution by an arbitrary angle in the x–y plane, we obtain the equivalent configuration with
the same energy. Therefore, the ground state of the Wigner molecule should be associated
with the rotationally invariant charge density distribution, which can be constructed from
the superposition of the rotated broken-symmetry states. This means that the plots of the
spatial charge density distributions, depicted in Figs. 37, 38, and 41 should be understood as
the pictures drawn in a function of the relative electron–electron coordinates.
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9.3. Anisotropic Quantum Dots

The real QDs rarely possess the perfect cylindrical symmetry. In most nanostructures, some
anisotropy is inevitable. The small anisotropy of the confinement potential can result from
the presence of impurities in the neighborhood of the QD region. The fabrication process
of the nanostructure can also lead to the anisotropy. Moreover, the anisotropic QDs are
intentionally created [54]. In the theory of QDs, the influence of the small anisotropy can be
taken into account as a small perturbation of the confinement potential [84]. The anisotropy
should stabilize the broken-symmetry Wigner-molecule configurations under the fixed spatial
orientation [124].
An extensive and detailed study of the Wigner molecules in the anisotropic QDs was

performed in Ref. [130]. For this purpose, multicenter Gaussian basis (35) was applied. The
calculations [130] were performed with the use of the multicenter CI method, which provides
exact results for few-electron systems. Here, we discuss the results for the elliptical QDs with
the confinement potential

Uconf�x� y� =
me

2
�A2

xx
2 + A2

yy
2�� (43)

where Ax and Ay are the confining frequencies in the x and y directions, respectively, and
Ay > Ax. The charge densities calculated in Ref. [130] are shown in Fig. 44 for the two-,
three-, and four-electron systems. In the lowest panel, the equilibrium configurations of
the classical point charge systems are depicted. For N = 3, the two equivalent classical
configurations exhibit the classical degeneracy. Figure 44 demonstrates the formation of the
Wigner molecules for N = 2 and 4 at the sufficiently large magnetic field. If the magnetic
field increases, the spatial distribution of the electrons tends to the corresponding classical
configuration. The classical degeneracy of the three-particle system is closely related with the
more complex charge density distribution of the three-electron system [130]. This distribution
is displayed more clearly in Fig. 45. The results of Figs. 44 and 45 [130] show that at the high
magnetic field the charge density distribution for the three-electron system approaches the
linear combination of the charge distributions of the two degenerate classical configurations.
In the strongly anisotropic QDs, the formation of the zigzag and linear Wigner molecules

was predicted [130] (see Fig. 46). The superposition of the two equivalent spatial configura-
tions for �Ay = 5�5 meV is connected with the classical degeneracy, which is depicted in the
right panel. In this case, the separation of the electrons is not complete, and we deal with a
partial Wigner crystallization [130].

9.4. Exact Broken-Symmetry Solutions

For certain thoroughly chosen magnetic fields, a single classical configuration can be real-
ized even in the three-particle system [130]. This configuration can be obtained from the
exact solutions, which possess the rotational symmetry, by constructing the following broken-
symmetry wave function:

-BS =
1√
2
�K1 + eiLK2�� (44)

where K1 and K2 are the degenerate few-electron states with the definite symmetry, which
are associated with the lowest-energy levels, and L is a real number representing a relative
phase. Although the electron charge densities associated with solutions K1 and K2 possess
the rotational symmetry of the external potential, the charge density obtained with wave
function (44) with the properly chosen relative phase does not reproduce this symmetry. As
a result, the exact state with the broken symmetry was obtained [130]. The charge density
for this exact broken-symmetry state is plotted in Fig. 47. For the chosen phase L and for the
strictly defined values of the magnetic field, the exact three-electron charge density possesses
the three distinct maxima, which coincide with the positions of the classical point charges
in one of the degenerate classical configurations (see the bottom panel in Fig. 44). If the
magnetic field increases, the broken-symmetry charge density distribution converges toward
one of the degenerate configurations of the classical point charges.
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Figure 44. Charge density of two-, three-, and four-electron systems confined in the anisotropic parabolic potential
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Figure 45. Charge density of three-electron system confined in the anisotropic parabolic potential with �Ax =
3 meV and �Ay = 4 meV at B = 30 T. From Ref. [130].
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Having at our disposal the exact broken-symmetry wave functions (44), we went back
to the isotropic (circular) QDs and performed the calculations with great care [130]. The
solutions [130] with the broken symmetry provide the lowest energy for the magnetic fields
that induce the ground-state angular momentum transitions. The results for the broken-
symmetry charge density are presented in Fig. 48 for three electrons and Fig. 49 for four
electrons.
The symmetry breakdown, obtained in the exact calculations [130], can be observed in the

laboratory frame, that is, this effect should be accessible by the high-finesse experimental
techniques [134]. The external perturbation (e.g., in the form of the Coulomb potential of
the charged impurity center), indicates that instead of the single-valued magnetic fields at
which the breakdown of the symmetry occurs we deal with the finite intervals of the magnetic
field in which the broken-symmetry charge density distributions are predicted [135].
The spatial density distributions of electrons obtained in Ref. [130] for the anisotropic

QDs is interpreted in terms of the laboratory-frame coordinates. Therefore, the calcu-
lated island-like electron distributions directly correspond to the real-space distributions
of the electrons, which can be observed (e.g., in the wave function imaging experiments
[134]).
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10. ARTIFICIAL MOLECULES
The three-terminal nanodevice fabricated from the triple-barrier structure [17] contains the
two vertically coupled QDs separated by a barrier layer. The electrons confined in the cou-
pled QDs can form molecular-like states, called the artificial molecules. These molecular
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Figure 48. Charge density of the exact broken-symmetry three-electron states in the isotropic parabolic potential
with �A = 3 meV. Plots (a–d) are drawn for B = 4�9� 7�5� 15, and 18.4 T, respectively. From Ref. [130].
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Figure 49. Charge density of the exact broken-symmetry four-electron states in the isotropic parabolic potential
with �A = 3 meV. Plots (a–d) are drawn for B = 4�75� 6�5� 11�5, and 16 T, respectively. From Ref. [130].

states were studied by the transport spectroscopy [17]. For the thin barrier separating the
QDs [17], the stability diagram with the Coulomb diamonds, observed for the single QD [7],
is only slightly deformed. However, for the sufficiently thick barrier, the Coulomb diamonds
were deformed and a pairing of conductance peaks was found [17]. Also the magnetic-field
evolution of the conductance peaks is strongly modified [117]. These effects were interpreted
in terms of the formation of the artificial molecules [117, 136].
A theory of artificial molecules deals with few-particle problems for which exact solutions

are hardly accessible even for simple parabolic confinement potentials [117]. This hard task
was undertaken by the group of Elisa Molinari and Massimo Rontani from the University
of Modena (Italy), who calculated excitation spectra of vertically coupled QDs by the CI
method [117]. We proposed the approach [114], which reduces the original 3D problem to
the effective, exactly solvable one-dimensional (1D) model. This model works quite well
for both the vertically coupled QDs and the quasi-1D nanostructures (e.g., quantum wires).
Here, we present a brief outline of the theoretical model [114, 137] and the main results
obtained for the coupled QDs.
In the cylindrical QD, the confinement potential Uconf can be expressed as a sum of lateral

U⊥ and vertical U� confinement potentials, that is,

Uconf�x� y� z� = U⊥�x� y�+ U��z�� (45)

The lateral confinement potential is assumed to be in the parabolic form, that is,

U⊥�x� y� =
meA

2
⊥

2
�x2 + y2�� (46)

where A⊥ is the lateral confinement frequency. For the separable potential given by Eq. (45)
the one-particle wave function has the product form

-�x� y� z� = -⊥�x� y�-��z�� (47)
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The ground-state wave function, which describes the lateral motion, has the form

-⊥�x� y� = �.1/2l�−1 exp8−�x2 + y2�/�2l2�:� (48)

where l = ��/meA⊥�1/2.
The problem of two electrons confined in potential (45) and interacting via the Coulomb

field cannot be strictly separated in the lateral and vertical coordinates like in Eq. (47). This
difficulty results from the intrinsic inseparability of the two-particle Coulomb interaction
potential. If, however, the lateral-motion ground-state wave function dominates in the expan-
sion of the two-electron wave function into the one-electron wave function, that is, the
excited lateral-motion one-electron states can be neglected, the two-electron ground-state
wave function can be taken on in the following separated form:

G�r1� r2� = -⊥�x1� y1�-⊥�x2� y2�%�z1� z2�� (49)

The approximate separation [Eq. (49)] is valid if the lateral excitation energy �A⊥ is much
greater than the electron–electron interaction energy. Moreover, independently of the con-
finement strength, separation (49) is possible for the electrons in the two coupled QDs if
both the QD confinement potentials possess the comparable range and potential-well depth.
In this case, the lowest-energy levels associated with the electron states localized in each
QD are nearly equal to each other, that is, their energy difference is much smaller than
the lateral excitation energy �A⊥. Therefore, the condition of separability (49) is satisfied.
Separated form (49) of the two-electron wave function allows us to derive the 1D effective
electron–electron interaction, given by [114, 137]:

Veff�z� =
.1/2*e2

)a
exp�M2�erfc�M�� (50)

where a = 21/2l = �2�/meA⊥�1/2, ) is the relative electric permittivity, M = �z�/a, and erfc�M�
is the complementary error function.
Effective interaction (50) can be applied to the following physical systems: (1) quasi-1D

QDs, which are formed in a section of a quantum wire [138], (2) vertically coupled double
QDs with the comparable sizes and potential-well depths [17], (3) weakly coupled QDs with
arbitrary confinement potentials.
Potential energy (50) of the effective electron–electron interaction is plotted in Fig. 50 and

compared with the Coulomb interaction potential and model potentials [139, 140]. Effective
interaction (50) is weaker than the Coulomb interaction for all interelectron distances z.
For z = 0 the effective interaction potential is finite and possesses a cusp, and for z → 
exhibits the Coulomb asymptotics. The effective interaction depends on the confinement
potential as follows: for weaker confinement the effective interaction becomes softer at
small interelectron distances. Figure 50 also shows that there are the qualitative differences
between the effective interaction (50) and model interaction potentials used in the literature
[139, 140].
The application of effective interaction (50) considerably simplifies the few-electron prob-

lems. For example, in the two-electron problem, the number of independent coordinates is
reduced to two. Accordingly, the two-electron Hamiltonian has the form

H12 = − �
2

2me

(
�2

�z21
+ �2

�z22

)
+ U��z1�+ U��z2�+ Veff��z1 − z2��� (51)

The eigenproblem for Hamiltonian (51) can be solved by the imaginary-time method
[112, 113] with the arbitrary required precision. Therefore, we can treat these numerical
solutions as exact. These exact solutions fully take into account the electron–electron cor-
relation. Comparing the exact solutions with the results of the HF methods, we can discuss
the effect of correlation in the two-electron systems.
In Ref. [114], we studied the artificial-molecule states that are formed in the two verti-

cally coupled QDs separated by the barrier layer with thickness b. The two lowest energy
levels of the two-electron artificial molecule, calculated in Ref. [114] by the exact, RHF and
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UHF methods are displayed in Fig. 51. When varying b, we change the coupling between
the QDs. For small b (i.e., for the strongly coupled QDs), the singlet and triplet states
are nondegenerate and the singlet state is the ground state of the artificial molecule. For
large b, that is, for the weakly coupled QDs, the singlet and triplet states become degener-
ate. Figure 51 shows that the exact results are quite well reproduced by the UHF method,
while the RHF method considerably underestimates the singlet energy, which leads to the
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Figure 51. Lowest singlet and triplet energy levels (solid curves) obtained by the exact calculation for the two-
electron system confined in the double QD as functions of barrier thickness b. The dashed (dotted) curve shows
the UHF (RHF) results for the singlet state. The dashed curve with crosses displays the results of both the UHF
and RHF methods for the triplet. From Ref. [114].
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qualitatively incorrect energy ordering for large b. For the triplet state, both the UHF and
RHF methods yield the results, which are almost indistinguishable from the exact results.
Comparing the UHF and RHF energy estimates with the exact results, we obtain a quantita-
tive estimate of the electron–electron correlation in artificial molecules (Fig. 52). The results
depicted in Figs. 51 and 52 show that the correlation is negligible for the triplet states, while
it becomes important for the singlet states in the weakly coupled QDs. The inaccuracy of
the UHF method (see Fig. 52) increases with barrier thickness b for small b, takes on the
maximum for b = 3 nm, and next decreases for larger b. For b > 6 nm, the UHF results are
indistinguishable from the exact ones. On the contrary, the RHF inaccuracy monotonically
increases with increasing b and becomes larger than 1 meV for b > 5 nm.
The results of Figs. 51 and 52 can be summarized as follows: the UHF method partially

takes into account the electron–electron correlation, while in the RHF method, the correla-
tion is completely ignored. Therefore, the RHF energy estimates provide suitable reference
data for studying the correlation. In the coupled QDs, the correlation increases with the
increasing thickness of the barrier, that is, the increasing electron–electron distance.
The contours of two-electron probability density distribution

(�z1� z2� = �%�z1� z2��2� (52)

plotted in Fig. 53, allow us to get a more deep insight into the physics of artificial molecules.
For b = 0, we deal with the two-electron artificial atom in which both the electrons occupy
the single QD. Introducing the barrier layer with the increasing thickness, we decrease the
interdot coupling, that is, increase the electron–electron correlation, which increases the
probability of finding the electrons in the different QDs. If the barrier is sufficiently thick,
the probability of finding both the electrons in the same QD vanishes, which corresponds to
the strong electron–electron correlation. Figure 53 shows that the UHF method quite well
reproduces the exact two-electron wave function for the singlet state and that both the UHF
and RHF methods work very well for the triplet state.
It is interesting to compare the properties of the artificial molecules with those of the

Wigner molecules [114]. The separation of electrons in the double QDs occurs if the repul-
sive potential of the barrier layer is sufficiently strong and possesses a large enough range. It
is possible to induce the separation of the electrons in the single QD only by increasing its
size [114]. If the electron system is confined in the single QD of the sufficiently large size,
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Figure 52. Estimated inaccuracy �E = �Eexact−EUHF�RHF�� of the UHF (RHF) method plotted by the solid (dashed)
curve for the singlet state of two electrons confined in the coupled QDs with barrier thickness b. The inaccuracies
for the triplet state of both the HF methods are shown by the dotted curve. From Ref. [114].
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Figure 53. Contours of the two-electron probability density in the coupled QDs as functions of z1 and z2 (in nm)
for (a) singlet and (b) triplet states for several values of barrier thickness b. The darker the shade of gray, the
larger the electron density. The white areas correspond to zero electron density. From Ref. [114].

the Wigner-molecule states can be formed as a result of the size effect [114]. The energy
of the two-electron system confined in the QD is depicted in Fig. 54 as a function of the
linear size of the QD. Similarly, as in the double QD, the singlet state is the ground state
of system and the singlet and triplet energy levels become degenerate if the size of the QD
increases. The error of the RHF method is a measure of the correlation energy [114]. We
note that the electron–electron correlation increases if the size of the QD increases. This
increasing correlation entails the distinct localization of electrons, which is clearly seen for
Z 
 100 nm (Fig. 55). We interpret the results of Fig. 55 in terms of the formation of the
Wigner molecule. The Wigner molecules are created in both the singlet and triplet states.
Contrary to the magnetic-field-induced creation of the Wigner molecules [124, 128–130], no
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Figure 54. Lowest singlet and triplet energy (solid curves) obtained by the exact calculation for the two-electron
system confined in the single QD as a function of linear QD size Z. The dashed (dotted) curve shows the UHF
(RHF) results for the singlet state. The dashed curve with crosses displays the results of both the UHF and RHF
methods for the triplet. From Ref. [114].
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Figure 55. Contours of the two-electron probability density in the single QD as functions of z1 and z2 (in nm) for
(a) singlet and (b) triplet states for several values of QD size Z. Note the different length scales for different Z.
The gray scale as in Fig. 53. From Ref. [114].

external field is necessary to create the Wigner molecules of this type. These species can
be called the size-induced Wigner molecules [114]. The formation of the size-induced Wigner
molecules [114] is caused by the strong electron–electron correlation, which appears in the
electron system confined in the QD with the sufficiently large size. Similarly, as in the cou-
pled QDs, the UHF method quite well reproduces the exact results, but the RHF approach
does not yield the reliable results. Comparing Fig. 53 with Fig. 55 we observe the remark-
able similarity between the electron-density distribution in the artificial molecules, formed
in the coupled QDs, and in the Wigner molecules, formed in the single QD. In both cases,
we obtain the similar localization of electrons at distinct spatial sites, which results from the
strong electron–electron correlation. Therefore, we can regard both the systems as two kinds
of the artificial-molecule states with the similar electron localization.
In the coupled QDs, the electron–electron correlation increases with the increasing thick-

ness of the barrier layer separating the two QDs. Therefore, the correlation can be artificially
tuned by changing the barrier layer thickness, which is a technologically realizable process.
This entails the possibility of changing intentionally the electron–electron correlation from
weak (for the thin barrier layer) to strong (for the thick barrier layer). The correlation can
also be tuned in the single QD by changing its size. These technological processes offer a
new type of quantum engineering, namely, the artificial modification of the electron–electron
correlation.

11. DISCUSSION
In a theoretical study of electronic properties of electrostatic QDs, we are faced with a
complicated many-body problem. The many-body system we deal with consists of many
atomic nuclei, core electrons, and valence electrons. The theory of the QDs is based on the
approximations, taken from the theory of bulk solids, which allows us to reduce this many-
body problem to the effective many-electron problem in which only the excess electrons
confined within the QD play a role. Typically, number N of QD-confined electrons satisfies
N ≤ ∼100. We can further reduce this number because the most interesting physics and
the most promising applications occur for 1 ≤ N ≤ ∼20. Finally, we are dealing with the
few-electron system. A question of the applicability of these approximations arises. Let us
discuss the most important of them.
One problem is connected with the applicability of the band theory, developed for the bulk

crystals, to the nanostructures with finite size. Can we use the band theory for the electrons
confined in the QD whose spatial extension in each direction is of the order of 10–100 nm?
For the electrostatically gated QDs, we can give the positive answer to this question because
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the physical QD region of nanometer extension is embedded in a quite large structure with
the size of the order of micrometers. The micrometer-sized crystal structure can be described
in the framework of the theory for bulk crystal. The electrons are localized within the elec-
trostatically gated vertical QDs by the electrostatic field of the leads and ionized donors and
by the band offsets. A lattice mismatch, which is quite large in self-assembled QDs, is small
in the electrostatic QDs. Also, the compositional modulation, which is important in InGaAs
alloys formed in the self-assembled QDs [141], is negligibly small in the electrostatic QDs.
Therefore, in the electrostatic QDs, the strain and alloying effects play a secondary role.
The QDs, studied by Ashoori et al. [6] and Tarucha et al. [7], are based on the gallium
arsenide. Therefore, we can use the band-structure parameters of GaAs in a modeling of
these QDs. The influence of GaAs/AlGaAs interfaces is taken into account by introducing
the appropriate band offsets into the confinement potential in the vertical direction.
In the framework of the band theory, we are using the envelope function approximation

(effective mass approximation) to describe the conduction band electrons in the QD. This
approximation can be derived for the electrons confined in the QD in the same manner as
for the shallow-level donor states. In both cases, we are dealing with the weakly localized
electrons with small binding energies. In the semiconductor heterostructure, the effective
electron conduction band mass changes abruptly across the heterojunction. For the GaAs-
based nanodevices [6, 7], these changes are small and have been neglected in Refs. [86, 88].
Another important problem is related with the screening of the electron–electron

Coulomb interaction. The main sources of this screening are valence electrons, atomic cores,
phonons, and charges induced on the leads. The screening via the valence electrons and
atomic cores is usually included with the help of the static screening of the Coulomb interac-
tion by the high-frequency relative electric permittivity ). The discontinuity of ) (dielectric
mismatch) across the interface leads to an electric polarization of the interface, which, in
turn, entails a modification of the electron–electron Coulomb interaction [142]. An analytic
expression for the polarization potential was obtained for the spherical QD [143]. For the
QDs with lower symmetry, the Poisson equation has to be solved numerically to find the
polarization potential [144].
The electron-phonon coupling is the another important source of screening of the inter-

electron interaction. In the nanostructures composed of the semiconductor compounds,
which are always more or less ionic, the coupling with longitudinal optical (LO) phonons
plays the major role in this type of screening. Usually, this effect is taken into account
by substituting the high-frequency electric permittivity ) by the static electric permittivity
)s . This substitution overestimates the screening that results in an underestimation of the
interelectron repulsion. The theory of the electron–LO–phonon interaction, applied to the
two-electron system bound to a positive donor center (D− problem) [105, 106], leads to
the approximate description of the LO-phonon-induced screening with the help of effec-
tive dielectric function )̃�r12�, which modifies the electron–electron Coulomb interaction as
follows:

Ṽ �r12� =
1

)̃�r12�

*e2

r12
� (53)

where r12 is the electron–electron distance. The theory [105, 106] yields the following asymp-
totic dependence of the effective dielectric function on the interelectron distance:

)̃�r12� → )� if r12 → 0� (54)

and

)̃�r12� → )s� if r12 → � (55)

At the intermediate distances, )̃�r12� takes on the values between ) and )s . In the theoreti-
cal description [86] of the three-terminal QD of Tarucha et al. [7], this space dependence of
the LO-phonon-induced screening was partly taken into account as follows [86]: the Coulomb
interaction between the electrons confined within the QD was screened by ), while the
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Coulomb field created by the QD-confined electrons in the more distant n-GaAs layers was
screened by )s . This approach [86] includes the major features of the interelectron Coulomb
repulsion that result from the electron-LO-phonon coupling.
In the electrostatically gated QDs, the electron–electron interaction is also screened by

the charges induced on the surfaces of metallic electrodes. This type of screening can be
taken into account either by an appropriate modification of the interelectron repulsion [83]
or by imposing the proper boundary conditions on the total electrostatic potential in the
nanodevice [86, 88]. The first method of screening was proposed by Bruce and Maksym [83].
However, the applicability of the approach presented in Ref. [83] is limited to a simple
parallel-plate geometry of the nanodevice. The method used in Refs. [86, 88] is based on the
numerical solution of the Poisson equation. Therefore, this approach [86, 88] is applicable
to an arbitrary geometry of the nanodevice. The effect of this type screening on the lateral
confinement potential in the cylindrical three-electrode QD is shown in Fig. 23.
Another important issue is related to the problem of a charge relaxation in the nanodevice

during the transmission of a single electron through the QD. If the transmitted electron is
in the quantum state in which the probability of its sojourn within the QD is much smaller
than the probability of finding the electron outside the QD, we deal with a slow relaxation.
It appears that the calculation results [86] obtained for the three-terminal nanodevice under
assumption of the slow relaxation very well agree with the experimental data [7, 23]. There-
fore, in the calculation [86] of N - and �N + 1�-electron energies used in single-electron
transport condition (5), the confinement potentials were the same. The confinement poten-
tial, used to describe the process of the tunneling of the �N + 1�th electron through the QD,
was calculated as that stemming from the presence of N electrons in the QD.
To determine the electronic properties of the electrostatically gated QDs, we have to know

the confinement potential that is created by the external voltages applied to the electrodes
and the band offsets. The confinement potential is also sensitive to the other parameters
of the nanodevice, in particular, its geometry and doping. The knowledge of the realistic
profile of the confinement potential is important for a nanodevice design with the required
electronic properties and for a theoretical description of the QD-confined electron states. It
is impossible to determine the confinement potential by experimental techniques. Therefore,
the confinement potential has to be either calculated from the first principles of electro-
statics [83–88] or assumed in an analytical form. In the majority of theoretical papers (e.g.,
Refs. [62–64, 68, 69, 72–77, 82, 109, 107]), the confinement potential was assumed in some
model form. The most commonly used are the rectangular and parabolic confinement poten-
tials [62–64, 68, 69, 72–77, 82]. The more general and realistic profiles of the confinement
potential can be modeled with the use of the Gaussian [109] and power-exponential [107]
functions. The model potentials usually neglect the important dependencies of the confine-
ment potential on the voltages applied to the electrodes, the concentration of ionized impu-
rities, the charge of the electrons confined within the QDs, and the charge induced on the
leads. These quantities essentially modify the electrostatic field in the nanodevice and thus
change the confinement potential. All these effects were taken into account in Refs. [86, 88],
in which the self-consistent procedure was applied to solve the Poisson-Schrödinger prob-
lem for two-terminal [88] and three-terminal [86] nanodevices. The very good agreement
of the calculation results [86, 88] with the single-electron capacitance spectroscopy data for
the two-electrode QDs [6] and the single-electron transport spectroscopy data for the three-
electrode QDs [7] proves the reliability of the method elaborated in Refs. [86, 88]. Similar
calculations, can be found in Refs. [83, 85, 87].
The realistic profile of the confinement potential was calculated in Refs. [86, 88]. Let us

summarize the results [86, 88] for only the spatial dependence of the confinement potential.
The vertical component of this potential results from the band offsets and can be quite well
approximated by a sequence of rectangular potential barriers and potential wells. The lateral
confinement potential possesses a more complex form as a function of the radial coordinate.
It can be quite well approximated by the parabolic potential but only near the center of the
QD with a small radius. The nonparabolic corrections play a role already inside the QD
region. At the QD boundary, the confinement potential has to be finite. It was shown [88]
that the power-exponential function [107] can be very well fitted to the numerical solutions
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of the Poisson equation. Moreover, the model confinement potential [107] assures that the
asymptotic boundary values are reached in a continuous manner. For the two-terminal QD
[6] with the radius of the order of 1 �m, the confinement potential is flat in the center of
the QD. The flatness of the confinement potential entails important physical consequences,
namely, that the fluctuating electric field, created by the ionized impurities, essentially affects
the energy spectra of the QD confined electrons.
The confinement potential in the electrostatic QDs is determined by the charges in the

nanodevice. The charges in the leads are maintained by external sources (external voltages)
and are taken into account in the theoretical treatment [86, 88] by putting the proper bound-
ary conditions on the total electrostatic potential. Inside the nanodevice, there is also the
space charge associated with ionized donors in n-doped layers. Additionally, we have to take
into account the charge of the electrons confined in the QD. At low temperature, the donor
impurity becomes ionized if the potential energy of the electrostatic field at the donor site
exceeds the binding energy of the electron to the donor center. The electrostatic field is
strongly affected by the QD-confined electrons. However, the wave functions of the electrons
confined in the QD depend on the potential confining the electrons in the QD. As a result,
we deal with the complex self-consistent problem, which has to be solved by the iterative
procedure for the Poisson and Schrödinger equations. Additionally, the charge of the ion-
ized donors has to be also determined in the self-consistent manner [86]. This is especially
important for the three-electrode QDs [7] in which the presence of the gate electrode leads
to a nonuniform distribution of the ionized donors. In the other papers (e.g., Ref. [85]), the
ionized donor distribution was assumed to be uniform. This assumption is justified for the
two-electrode QDs [6] but only for the ionized donors located in the AlGaAs barrier layers.
It is interesting to consider the role of the gate electrode in the two-terminal [6] and

three-terminal [7] QDs. In both types of vertical QDs, the gate electrode is placed at dif-
ferent positions: it is the position on the top of the cylinder in the two-terminal QD [6]
and the position at the side of the pillar in the three-terminal QD [7]. Despite the different
gate placements, the effect of this electrode is, to some extent, similar in both nanodevices.
Namely, the gate electrode allows us to control the electrostatic field, confining the electrons
in the QD. In particular, the lateral confinement of the electrons in the two-terminal nan-
odevice [6] results from the inhomogeneity of the electric field created between the gate and
bottom electrode. In spite of the same mechanism of creation of the confinement potential,
there are essential differences between the two types of the electrostatic QDs. These dif-
ferences are observed in the dependence of the chemical potential on the gate voltage (cf.
Figs. 15 and 16). In the two-electrode QD of Ashoori et al. [6], this dependence is almost
linear, that is, the gate voltage–to–energy conversion factor is nearly constant (Fig. 16). In
the three-electrode QD of Tarucha et al. [7], the dependence of the QD chemical poten-
tial on the gate voltage is nonlinear, that is, the conversion factor strongly depends on the
gate voltage (cf. Fig. 15). This nonlinearity can be explained as follows. The varying gate
voltage changes the range of donor ionization in the n-type layers that adhere the source
and drain in the three-terminal nanodevice (see Fig. 4) or are located in the substrate in
the two-terminal nanodevice (see Fig. 2). The change of the ionization range determines
the corresponding change in the effective position of the electrode. In the two-terminal
nanodevice [6], the electrons are confined within the QD at approximately half the distance
between the gate and the substrate (i.e., faraway from both the electrodes). In this case,
the gate-induced change of size of the donor ionization region leads to a negligibly small
nonlinearity of the chemical potential of the QD as a function of the gate voltage. In the
three-terminal nanodevice [7], the QD is located much closely to the first n-doped layer,
which contains the ionized donors, than to the gate. In this case, the change of size of the
ionized-donor domain leads to the clear nonlinearity of the chemical potential as a function
of the gate voltage.
In the two-terminal nanodevice [6], the lateral confinement energy is a nonlinear and

nonmonotonic function of the cap radius (see Fig. 29). Also the other characteristics of the
two-terminal nanodevice are very sensitive to the cap radius (see Fig. 29). As a result, the
shape of the lateral confinement potential is very sensitive to the geometry of the nanodevice,
in particular to the cap radius [88]. By changing the cap radius we can obtain different
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shapes of the confinement potential: from almost linear through Gaussian (parabolic near
the axis) to almost rectangular. In this way, by changing the radius of the top electrode, we
can model the electronic properties of the QD, which are determined by the confinement
potential.
In this section, we have discussed the effects that most strongly affect the electronic prop-

erties of the gate-controlled QDs. In the calculations (e.g., Refs. [86, 88]), some of these
effects were fully or partly taken into account and some of them were neglected. For the
three-terminal QD [7], we can give a quantitative estimate of the neglected effects by com-
paring the measured and calculated positions of the first peak on the current versus gate
voltage plot for the zero bias (Fig. 15). In Ref. [86], the single fitting parameter (the radius
of the cylindrical pillar) was adjusted to reproduce the positions of the next 11 peaks. There-
fore, the discrepancy obtained for the first peak between the measured [7] and calculated
[86] position can be treated as a quantitative measure of all the corrections that stem from
the neglected effects. The inaccuracy (cf. Fig. 15) of the theoretical method [86], estimated
in such a way, is very small.

12. APPLICATIONS
In this section, we discuss the most important present and future applications of the electro-
statically gated QDs. Nowadays, the QD based single-electron transistors are constructed.
The gated QDs are expected to be applied in future quantum computers.

12.1. Single-Electron Transistor

The three-terminal QD nanodevice [7] is a prototype of the single-electron transistor (SET).
Contrary to the conventional transistor, the SET can be turned on and off at different gate
voltage values (Fig. 6). Each on/off switching of the SET corresponds to the flow of the
single electron through the nanodevice. Figure 6 shows that the sharp current peaks arise
from the plateaus of zero current at several, well-defined gate voltages. Each peak of the
current results from many sequential tunneling events of the single electrons via the QD.
We note that for the two-state transistor operation we have to limit the applied gate-voltage
regime to that corresponding to two chosen peaks only. The SET possesses an advantage
of small power consumption and short switching time but a disadvantage of low operating
temperature.
After the first demonstration of the SET by Fulton and Dolan [145], many experimental

efforts were mainly focused on raising the operating temperature of this nanodevice. The
operating temperature that was initially in the sub-Kelvin range has been raised to room
temperature [47, 146, 147]. The SETs are used as sensitive electrometers [146, 147] that
detect the change of electrostatic potential due to the injection of single electrons. This in
turn leads to the application of SETs as detectors in single-electron memory cells [146, 148].
The vertical SET was used to a manipulation of the lateral confinement geometry of the

QD [17]. Moreover, the single-electron capacitance spectroscopy measurements were per-
formed on the QDs with the help of the SET [18]. The application of the SET permitted
measurement of a few thousand individual electron additions in a single vertical QD, start-
ing from the first one, with a great charge sensitivity [18]. The single-electron tunneling
through the coupled QDs was detected with a radio-frequency SET [149]. In these experi-
ments [149], accurate current measurements were performed by counting the single-electron
tunneling events. The SET is treated as one of the best candidates for future logic large-
scale-integrated circuits because of its ultralow power consumption and high tunability [30].

12.2. Quantum Computation

Quantum computation directly employs the laws of quantum mechanics to perform calcu-
lations [150]. Nowadays, the theory of quantum computation has become a mature theory
[150]. Moreover, many experimental realizations of quantum computers have been proposed
[150]. In several papers (e.g., Refs. [31–33, 35–39, 42–44, 151], the implementation of QDs
was proposed to realize future quantum computers.
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The quantum computation makes use of qubits, which are the units of quantum infor-
mation [150], and quantum logic gates, which are used to transform the qubits. A quantum
algorithm consists of a sequence of logic operations, which are performed on the qubits. For
the physical realization of the qubit, we can use any two-level quantum system. For example,
the electron spin is a very good candidate to represent the qubit. Most proposals [34, 44, 151]
that apply the QDs to the quantum computation rely on the use of the electron-spin states
as the qubits. The application of QD-confined excitons and biexcitons as qubits was also
considered [34]. Moreover, the qubits can be realized in QDs directly on the electron states
by detecting either the presence or absence of the single-electron charge in the QD [45].
Several investigations [36, 40, 42, 43] are devoted to the optically driven quantum computer
based on the coupled QDs.
The physical realization of quantum computations is possible provided that certain con-

ditions are satisfied [151]. DiVincenzo [151] formulated the following requirements for the
implementation of the quantum computation:

(1) The qubits have to be realizable in a scalable physical system.
(2) The initial qubit state has to be prepared with high precision.
(3) The unitary time evolution of the qubits has to be fully controllable.
(4) The decoherence time has to be much longer than the gate operation time.
(5) The final state of the qubit has to be measurable with high enough precision.

These requirements put certain limitations on the quantum computing technology. The main
problems are connected with a scalability of the system of qubits (condition 1) and a fragility
of the qubits (condition 4). We have to maintain the controlled unitary evolution of the
qubits until the calculations are completed. It is possible to perform the controlled time evo-
lution of the quantum system provided the quantum system is completely isolated from an
environment. Nevertheless, the complete isolation of the quantum system disables perform-
ing the readout operations. Therefore, a weak coupling with the environment is necessary.
Unfortunately, this coupling leads to the decay and decoherence of qubits, which reduce
the performance of the quantum computer. When using the electron-spin states to realize
the qubits, we exploit the fact that the lifetime of these states is reasonably long [58]. The
lifetime of the electron-spin Zeeman states was estimated to be ≥50 �s in the lateral gated
QDs. On the basis of the results of experiments [58], we can neglect the decay of spin qubits
during the gate operation time. However, the decoherence time of the QD qubits is rather
short because the QD confined electrons, as all the particles in a solid medium, interact
with other electrons and atomic nuclei. Even at very low temperature, these interactions are
nonnegligible. One can quantitatively estimate the effect of decoherence [152] introducing
a ratio of the decoherence time to the single-operation time. For the recently studied QDs,
this ratio has been estimated to be of the order of 103 [152]. The decoherence–to–operation
time ratio for the QDs appears to be much smaller than that estimated for other physical
systems designed for application in quantum computation (e.g., for ion traps the correspond-
ing ratio was estimated to be ∼1013 [152]). At the recent stage of research, it seems that
many problems have to be solved to reduce the effect of decoherence in QDs.
Many efforts were undertaken toward a physical realization of quantum computation on

the QDs. Here, we mention only few of them. A realization of a quantum register was
studied [36] in the vertical gated QDs. Sanders et al. [36] considered the coupled asymmetric
QDs with dipole–dipole interaction between the electrons confined in the adjacent dots and
discussed a possibility of constructing the three-qubit register. The possible implementation
of the QDs as spin filters and single-spin memory was studied in Ref. [37]. The spin filter,
which produces the spin-polarized current, is very desirable for the readout operations of
spin qubits. The mapping of spin states onto the orbital states and vice versa was proposed
to realize high-finesse optical quantum gates [44]. Optically driven qubits were studied [42]
in the coupled QDs. In Ref. [40], a generation of quantum entanglement and information
processing with excitons confined in the QDs was proposed.
An experimental study of the electron spin as a candidate for a scalable qubit was per-

formed [58] in InAs/GaAs lateral QDs. The authors [58] measured the spin relaxation time
and found a lower bound to it. Moreover, the spin Zeeman splitting was directly observed
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by the single-electron transport spectroscopy [58]. The coherent manipulation of spin qubits
was performed [59] by applying the high-speed voltage pulses to the laterally coupled QDs.
These achievements [58, 59] demonstrate that the implementation of electron spin qubits is
within the reach of modern advanced technology.

13. CONCLUSIONS
The results from Refs. [86, 88] show that by taking into account all the relevant parameters
of the nanodevice it is possible to obtain the correct quantitative description of the electro-
statically gated vertical QDs [6, 7, 23]. The very good agreement with experiment obtained
in Refs. [86, 88] provides an argument against the skepticism [13] related with a possibility
of a quantitative comparison of the theory of QDs with experiment. Of course, the unavoid-
able inaccuracies in the nanodevice fabrication can randomly disturb the perfect cylindrical
symmetry of the QDs [13], but they can be treated as small perturbations, which do not
change the main characteristics of the nanodevice. The theory, elaborated in Refs. [86, 88],
yields the quantitatively correct interpretation of the electronic properties of the vertical
QDs with both two [6] and three [7] electrodes attached and incorporates all the relevant
nanodevice parameters, which allows us to describe the major characteristics of the QDs.
For the electrostatically gated QDs, a set of the physically relevant parameters includes a
geometry, a composition, a doping, external voltages, ohmic contacts, and Schottky barriers.
Moreover, the effect of screening of the electron–electron interaction is also important.
The electronic properties of the electrostatically gated QDs are determined by the con-

finement potential. In the electrostatically gated vertical QDs [6, 7], the vertical confinement
of the electrons results from the band offsets and the lateral confinement is of the electro-
static origin. The band offsets are determined by the composition of the adjacent layers. The
change of thickness of the subsequent layers modifies the profile of the vertical confinement
potential. The laterally directed electrostatic field is created by the charges gathered on the
gate and the ionized donors and is modified by the charge of the electrons confined within
the QD.
The QDs are often called artificial atoms. Similarly, as in a natural atom, the electrons

confined in a QD form localized bound states with discrete energy levels. In the natural
atoms, the electrons are bound to the nucleus by the Coulomb potential, which is divergent
at the nucleus position. On the contrary, the confinement potential that binds electrons in
the QD is smooth at the dot center and can be well approximated by the power-exponential
function [Eq. (25)]. The power-exponential potential [107] is very similar to the Woods-
Saxon potential [153], which was introduced in nuclear physics to describe a proton-nucleus
scattering. Also other potentials used in the theory of the atomic nucleus are similar to those
applied to the QDs (e.g., a truncated parabolic potential is commonly used to model the
atomic nucleus). Because of the similarity of the QD-confinement potential to the model
potentials used in the theory of atomic nucleus we can treat the QD as a solid-state analog
of the atomic nucleus (i.e., it might be called artificial nucleus). Because of the similar shapes
of the binding potentials, the quantum states of electrons confined in the QD more strongly
resemble those of nucleons in atomic nuclei than the electron states of natural atoms [13].
In summary, the electrostatically gated QDs yield a unique opportunity of tailoring the

electronic characteristics of nanodevices. By changing the parameters of the nanodevice, in
particular, the external voltages, we can obtain the quantum states of few-electron systems
confined within the QD with the designed properties. This opens the way for quantum
engineering with electrons. The electrostatically gated QDs have been already applied as
single-electron transistors and are expected to play an important role in a future quantum-
computer technology.

GLOSSARY
Artificial atom A synonym of the quantum dot (QD). However, the artificial atom can
denote the QD that contains the confined electrons bound in the atomic-like states with
discrete energy levels.



Modeling of Electrostatically Gated Vertical Quantum Dots 449

Artificial molecule Two or more coupled QDs separated by potential barrier layers.
Electrostatically gated QD (electrostatically defined QD, electrostatic QD, gate-controlled
QD, gated QD) The QD in which the lateral confinement of the charge carriers results
from the inhomogeneous electrostatic field created by the electrodes attached to the QD
and the ionized donors.
Maximum-density droplet (MDD) A phase of the QD-confined electron system in which
all the electrons are spin polarized by the external magnetic field and—in the cylindrical
QDs—occupy the one-particle orbitals with the subsequent angular momenta. At the suffi-
ciently high magnetic field, the MDD decays into the Wigner molecule. The spatial electron
density distribution in the MDD has a form of a flat maximum and abruptly falls down to
zero at the edge.
Quantum bit (qubit) A unit of quantum information. A qubit can be realized by any two-
state quantum system.
Quantum computation Performing the quantum logic operations on the qubits with a
direct exploitation of the laws of quantum mechanics.
Quantum dot (QD) A nanostructure in which the charge carriers (electrons and holes) are
confined in all the three dimensions within the region of nanometer size. The QD is usually
made of semiconducting materials.
Quantum logic operation (quantum logic gate) Performing the unitary transformation on
the qubit. There are one- and two-qubit quantum gates depending on the initial qubit state.
Single-electron transistor (SET) A QD-based nanodevice in which the current flows as a
result of sequential single-electron tunneling events. The SET can be switched on and off at
different, well-defined values of the gate voltage.
Vertical QD The QD which consists of sequence of layers made of different semiconduc-
tors. The layers are grown on the substrate in the z (vertical) direction and form a pillar,
which usually has the cylindrical symmetry. The confinement of the charge carriers in the z
direction results from band offsets and the confinement in the lateral (x� y) directions is due
to the external inhomogeneous electrostatic field and the presence of surfaces of the pillar.
Wigner molecule A phase of the QD confined few-electron system in which the electrons
are localized at different spatial sites, which form the ordered island-like structure. The
Wigner molecule is created by the sufficiently high magnetic field or the size effect in the QD.
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