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Abstract
A theoretical analysis of formation and symmetry transformations is presented
for Wigner molecules with N = 2, . . . , 20 electrons confined in quantum dots
at high magnetic fields. Using the unrestricted Hartree–Fock method with the
multicentre Gaussian basis, we have found that Wigner molecules with N � 6
abruptly change their shape and symmetry with an associated jump in the first
derivative of the ground-state energy, i.e. they undergo phase transitions. In
particular, the phases of the Wigner molecules obtained just after emerging
from the maximum-density droplet (MDD) phase possess a different symmetry
from that formed at a high magnetic field. We show that the properties of the
electron–electron interaction energy demonstrate very well both the breakdown
of the MDD and the quasi-classical character of the Wigner molecule in the high
magnetic field. Possible mechanisms of the MDD decay are discussed.

1. Introduction

A Wigner phase is a strongly correlated state of the electron system, in which the electrons
occupy separate sites forming either a lattice (Wigner crystal) or an island-like structure
(Wigner molecule). This quantum electron system with spatially separated electrons exhibits
quasi-classical properties. In three-dimensional space, for a low electron density, the phase
transition between the electron liquid and crystalline phases was theoretically predicted by
Wigner [1]. The formation of a Wigner crystal was observed [2] in the two-dimensional (2D)
electron system on the surface of liquid helium. A magnetic-field-induced liquid-to-solid
phase transition was reported for a 2D electron plasma at a GaAs/GaAlAs heterojunction [3].
The existence of a pinned Wigner solid was also claimed [4] in Si at zero magnetic field,
below a critical electron density. In the ground state, the 2D Wigner crystal forms a triangular
(hexagonal) lattice.

Electrons confined in quantum dots (QDs) can form Wigner molecules (also called
electronic molecules) [5–8]. Similar to a Wigner crystal in the absence of a magnetic field,
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a Wigner molecule is created at low electron density. Application of an external magnetic
field yields more favourable circumstances for the creation of a Wigner molecule [6–9]. If the
magnetic field increases, the ground state of the electron system confined in the QD undergoes
several transformations [10] connected with changes of the spin–orbital configurations and
the shape of the electron distribution. For a sufficiently high magnetic field the electrons
confined in the QD exhibit complete spin polarization [10]. In this state, called a maximum-
density droplet (MDD) [8, 11, 12], the electron density distribution possesses the symmetry of
the confinement potential. For a cylindrically symmetric confinement potential the electrons
occupy the one-particle states with consecutive magnetic quantum numbers [11, 13]. At
higher magnetic fields, the MDD phase decays. The decay of the MDD can be obtained in
the framework of the mean-field approaches, i.e. the Hartree–Fock (HF) and local spin density
approximation (LSDA) [8]. In the mean-field approaches, the phase that emerges from the
MDD does not possess cylindrical symmetry, i.e. it corresponds to the broken-symmetry state.
At very high magnetic fields the electrons occupy clearly separated islands forming a Wigner
molecule [8, 11, 14]. The Wigner molecule created in the limit of an extremely high magnetic
field possesses the same shape as that of a system of classical point charges [16–18]. The
breakdown of the MDD has been observed in cylindrical gated QDs [19].

In the literature, different mechanisms of MDD breakdown have been reported. Reimann
et al [11] interpreted their local-current spin-density results in terms of MDD decay beginning
at the edge of the droplet. In this process, a ring of electrons separates out from a flat density
maximum [11]. On the other hand, Yang and MacDonald [13] argued that the MDD phase
becomes unstable when a hole appears in the electron density in the centre of the QD. In the
present paper, we propose a solution to this controversy.

In a recent paper [14], we studied the possibility that Wigner molecules are formed in
different space configurations (different phases) [14] and predicted the existence of several
new phases of Wigner molecule. In the present paper, we provide the complete results of the
calculations performed for the different Wigner molecule phases and an extensive discussion of
the underlying physics. The results and discussion presented in this paper considerably extend
those given in the brief announcement [14]. Moreover, we discuss the MDD breakdown
mechanisms and the applicability of conditions for MDD instability. In the calculations,
we have applied the unrestricted HF method with a multicentre basis, which is especially
designed for the description of Wigner molecules at high magnetic fields. The proposed basis
enables us to describe both the breakdown of the MDD and the quasi-classical localization
of the electrons. Using this basis we have studied the behaviour of Wigner molecules with
N = 2, . . . , 20 electrons in the magnetic-field regime between the MDD instability and the
extremely high-field classical limit.

The paper is organized as follows: section 2 contains the theoretical model and section 3
the results of the calculations of the ground-state energy and electron density distribution. In
section 4, we provide a discussion and in section 5 conclusions and a summary.

2. Theory

We consider the N-electron system confined in a 2D QD and subject to an external magnetic
field. We assume that the electrons are spin polarized. The magnetic field B is applied in the z
direction and the electrons are confined in the x–y plane. In the effective-mass approximation,
the Hamiltonian of the system has the form

H =
N∑

i=1

(
hi + Vconf (ri ) +

N∑
j>i

κ

ri j

)
− N

2
g�µB B, (1)
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where hi is the Hamiltonian of a single electron in the magnetic field, ri = (xi , yi),
ri j = |ri − rj |, κ = e2/4πε0ε and ε is the static dielectric constant. The last term in
equation (1) is the Zeeman energy of N spin-polarized electrons, where g� is the effective g
factor andµB is the Bohr magneton. The QD confinement potential is assumed to be parabolic,
i.e.

Vcon f (r) = 1
2 mω2

0r2, (2)

where m is the electron band mass and ω0 is the confining frequency. In the non-symmetric
(Landau) gauge, the one-particle Hamiltonian for an electron in a magnetic field has the form

h = − h̄2

2m

(
∂2

∂x2
+
∂2

∂y2

)
+ ih̄ωc y

∂

∂x
+

1

2
mω2

c y2, (3)

where ωc = eB/m is the cyclotron frequency,
The ground-state energy of Hamiltonian (3), i.e. the lowest Landau level, is equal to

E0 = h̄ωc/2. Since this energy level is infinitely degenerate, we can choose the ground-state
wavefunction in many forms. We have chosen [14] the one-electron ground-state wavefunction
in a form of a displaced Gaussian

ψR(r) =
(
α

2π

)1/2

exp[−(α/4)(r − R)2 + (iα/2)(x − X)(y + Y )], (4)

where R = (X,Y ) is an arbitrary vector and α = eB/h̄. One can easily prove that
wavefunction (4) fulfils the eigenequation for Hamiltonian (3) with eigenvalue E0. The electron
density distribution associated with wavefunction (4) has the shape of the Gaussian centred at
point R, which can be treated as the centre of the Landau orbit of the single electron.

In the present paper, wavefunctions (4), centred at different R = Ri , are used to form
the multicentre variational basis, which is suitable for a description of Wigner molecules. A
similar approach, but with the one-electron wavefunctions written in the symmetric gauge, was
applied to Wigner crystals [20, 21] and Wigner molecules [22, 23]. We solve the N-electron
eigenproblem by the unrestricted HF method with the one-electron wavefunctions

	ν(r) =
N∑

i=1

cνi ψ̃Ri (r), (5)

where ν numbers the occupied one-electron states (ν = 1, . . . , N), cνi are the linear variational
parameters and ψ̃Ri (r) are taken in the form of (4) with the parameter α replaced by the
nonlinear variational parameter α�. In order to determine the positions of N centres Ri in
wavefunction (5), we consider the classical counterpart of the Wigner molecule, i.e. the system
of N classical equally charged particles confined in potential (2). The total potential energy
of this classical system is given by

U c
tot =

N∑
i=1

(
Vcon f (R

c
i ) +

N∑
j>i

κ

|Rc
i − Rc

j |
)
, (6)

where Rc
i are the position vectors of N classical point charges in the configuration, for which

potential energy (6) possesses a local minimum. In the quantum-mechanical calculations,
we apply the following scaling of the centres of Gaussians: Ri = σRc

i , where the scaling
factor σ is the second nonlinear variational parameter. For the sake of feasibility of the
present calculations we have applied uniform scaling of the classical configurations instead of
introducing separate variational parameters in the wavefunctions (5). This choice enables us to
reproduce the classical configurations in the limit of the infinite magnetic field, for which the
charge distribution associated with wavefunction (5) tends to that of the classical point charges.
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Table 1. Ground-state energy of the 2D two-electron system in parabolic confinement for different
magnetic fields B . We quote the results Eexact of the exact calculations, the HF estimates EH F ,
and their difference �E . Energy is expressed in meV.

B (T) Eexact EH F �E

3 13.02 13.34 0.32
5 15.77 15.90 0.23

10 23.35 26.97 0.43
20 39.88 40.10 0.22
30 56.71 56.84 0.13

In the present paper, basis (5) contains, besides two nonlinear variational parameters α� and
σ , N complex linear parameters cνi for each electron, i.e. N2 parameters for the N-electron
system. However, taking into account that the linear parameters are not entirely independent,
since in the HF method wavefunctions 	ν are forced to be mutually orthogonal, we have at
our disposal N(N + 1)/2 independent linear variational parameters.

3. Results

Throughout the present paper,we apply the notation of different space configurations of Wigner
molecules, which stems from the classical charge system [16–18]. Accordingly, we denote by
N1–N2–N3 the configuration of the N-electron Wigner molecule in which the inner,middle and
outer shells are occupied by N1, N2 and N3 electrons, respectively, whereby N = N1 + N2 + N3.
In the case of only two occupied shells, we label the corresponding configuration by N1–N2

and omit zero for the unoccupied outermost shell. This notation corresponds to the shell-like
equilibrium configuration of equally charged classical particles [16–18].

In the calculations, we have used the material parameters of GaAs, i.e. m = 0.067 me,
ε = 12.9, g� = 0.54 and h̄ω = 3 meV. It is known that the HF method works with a relatively
high precision for spin-polarized electron systems [12, 15], which are considered in the present
paper. In a recent paper [14] we performed test calculations in order to check the quality of
basis (5) in the high-magnetic-field regime, i.e. for B = 20 T. We have shown [14] that the
Slater determinant constructed from wavefunctions (5) leads to the results close to the those of
Müller and Koonin [6], which were obtained in a symmetric gauge with the definite angular
momentum basis. For N � 4 the present upper bounds are better than those of [6]. We note
that in our approach only one element of basis (5) is needed for each electron. Therefore, the
present method requires much less computational effort than the method used in [6], in which
a superposition of a large number of angular momentum eigenstates is necessary in order
to reproduce the localized island-like distribution of electrons. We have also compared our
results with those obtained using the Monte Carlo method [24] and found a good agreement.
Moreover, we have estimated the precision of the present approach by applying it to the two-
electron system with 2D parabolic confinement. In this case, the eigenproblem is separable
into centre-of-mass and relative-coordinate problems, which can be solved exactly [25]. A
comparison of the present HF estimates with the exact results [25] is given in table 1. The
results quoted in table 1 show that the HF inaccuracy does not exceed 0.5 meV, reaches a
maximum for B = 10 T, and then decreases with the magnetic field.

These test calculations verify the reliability of the present computational method in the
magnetic-field regime considered. The high precision of the present calculations in the high-
magnetic-field limit results from the fact that, in this regime, basis (5) allows us to reproduce the
properties of classical Wigner molecules. However, some improvement of the present results
is possible for lower magnetic fields. In order to enable the reader to verify the accuracy of the
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Table 2. Energy (in meV) of the different phases of the Wigner molecules with N = 4, 6, 9, and
16 electrons for several values of the external magnetic field. The notation of Wigner-molecule
phases is defined in the text.

B (T) 0–4 0–6 1–5 1–8 2–7 5–11 1–6–11

6 52.01 99.88 100.06 193.16 193.33 496.28 496.39
10 64.00 118.45 117.98 220.62 220.40 545.67 545.60
16 83.23 147.20 146.58 263.36 263.04 620.64 620.36
30 129.88 216.88 216.34 367.55 367.29 804.71 804.48

present approach, we list in table 2 the total energies of the 4-, 6-, 9- and 16-electron Wigner
molecules in different phases.

The results for the six-electron system are displayed in figure 1, which shows the
dependence of the ground-state energy on the magnetic field calculated with wavefunction (5)
for the MDD and Wigner molecules in configurations 0–6 and 1–5. For the spin-polarized
MDD phase the results of the restricted HF method cannot be amended by the unrestricted
version of the HF method. For the MDD it is more convenient to use the symmetric gauge,since
the optimal one-electron wavefunctions are the eigenstates of the single-electron operator of
the z component of the angular momentum. In order to perform an additional test of the present
method, we have solved the restricted HF equations by the numerical finite-difference method
for the cylindrically symmetric MDD phase. This numerical approach takes into account the
full cylindrical symmetry of the MDD phase and yields results that are exact within the HF
approach. In figure 1, we compare these accurate results (dotted curve) with those obtained
with the multicentre basis (5) (solid and dashed curves). In the MDD stability regime, the
results of the calculations with the two different multicentre bases (5) slightly overestimate
the exact MDD energy, but run parallel and close to the accurate curve. Moreover, both the
bases, which correspond to the configurations 0–6 and 1–5, work with the same precision in
the MDD regime. In the insets of figure 1, the ground-state electron density distributions are
depicted. All the electron distributions, including that for the MDD phase, have been obtained
with basis (5). We see that the multicentre wavefunction (5) describes the localized island-like
distribution of electrons in the molecular phases and moreover reproduces surprisingly well
the cylindrically symmetric electron distribution in the MDD phase.

For B � 5 T the curves obtained with the multicentre basis (5) rapidly change their slope.
Then, the charge distribution obtained with basis (5) ceases to mimic the MDD and goes over
into the molecular type of localization. At this field, the energies of the 0–6 and 1–5 Wigner
molecules become lower than the MDD energy. Just after the breakdown of the MDD the 0–6
phase possesses the lowest energy. However, at higher magnetic fields the 1–5 configuration
becomes the lowest-energy phase. The appearance of this phase can be predicted based on the
properties of the classical Wigner molecule, since the 1–5 configuration is the lowest-energy
configuration of the six-electron classical Wigner molecule and the classical limit is reached at
infinite magnetic field. These results indicate that the phase of the six-electron system changes
first from the MDD into the 0–6 molecular phase, and next from the 0–6 into the 1–5 phase.

The determination of the critical magnetic field for MDD breakdown is rather ambiguous.
In our previous paper [14] we used one possible approach, i.e. we found the magnetic field
for which the energy estimate obtained with the multicentre basis becomes lower than the
exact MDD energy. However, this approach overestimates the critical magnetic field, since
the MDD energy is exact (within the HF method), while the upper bounds obtained with the
multicentre basis (5) can be improved in the finite-magnetic-field regime. In the present paper,
we also search for the critical magnetic field using another approach, which exploits only the



4194 B Szafran et al

Figure 1. Ground-state energy E of the six-electron MDD (dotted curve) and the Wigner molecule
in phases 0–6 (solid curve) and 1–5 (broken curve) as functions of magnetic field B . Insets show the
corresponding electron density distributions on the x–y plane (length is measured in nanometres).

results obtained with basis (5). When comparing the energy estimates calculated by the same
method, the possible errors cancel out, which justifies this approach. Moreover, the charge
density distribution obtained with basis (5) mimics that of the MDD phase in the magnetic-
field regime below the critical field for the MDD/Wigner molecule transition and yields the
molecular charge distribution above the critical field.

In the present paper, instead of comparing the ground-state energies, which differ by
a small amount (cf figure 1), we use the characteristic properties of the electron–electron
interaction energy to extract the critical magnetic field. Figure 2 displays the expectation value
of the total electron–electron interaction energy, which is defined as follows:

Eint = 〈
|
N∑

i=1

N∑
j>i

κ

ri j
|
〉, (7)

where
 is the Slater determinant constructed from the orthogonal one-electron eigenfunctions
of the HF operator obtained with basis (5). In figure 2, the magnetic-field regime to the left
of the peak position corresponds to the MDD phase. The increase of the magnetic field
in the MMD regime forces the electron charge distribution to shrink. As a result, in this
magnetic-field regime, the electron–electron interaction increases with increasing magnetic
field. At a certain magnetic field, the electron–electron repulsion becomes so strong that the
MDD breaks down and the charge distribution undergoes reorganization into an island-like
molecular configuration. In the molecular phase, the electron–electron interaction energy
rapidly decreases. Therefore, the critical magnetic field for the breakdown of the MDD phase
can be precisely determined from the position of the sharp peak on the interaction energy versus
magnetic field plot (cf figure 2). The critical magnetic fields determined in such a way are equal
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Figure 2. Expectation value Eint of the total electron–electron interaction energy (equation (7))
for the six-electron system confined in the QD as a function of magnetic field B . Solid (broken)
curve shows the results obtained with wavefunction (5) corresponding to configuration 1–5 (0–6).
The electron–electron interaction energy Eclassical

int is shown by the horizontal lines for classical
molecules 1–5 (solid curve) and 0–6 (broken curve). Inset: energy difference �E between the
ground-state energies of the 0–6 and 1–5 Wigner molecule phases. The horizontal broken line
shows this energy difference for the classical Wigner molecule.

to 4.9 and 5.1 T, for the decay of the MDD into the 0–6 and 1–5 molecular phases respectively,
which means that the 0–6 phase of the Wigner molecule is formed just after the breakdown of
the MDD. The 0–6 phase has the lowest energy up to 6.95 T (cf figure 1). Above the MDD
breakdown, the electron–electron interaction energies for both molecular phases decrease with
increasing magnetic field, pass through flat minima and approach the corresponding high-field
limit values from below. The horizontal lines in figure 2 mark the values of the electron–
electron interaction energy for classical Wigner molecules (cf the second term in equation (6)).
In the high-field limit, the quantum-mechanical expectation values asymptotically reach the
corresponding classical values, which is another signature of the classical behaviour of the
system at extremely high magnetic fields. The electron–electron interaction energy turns out
to be a useful quantity for demonstrating both the MDD breakdown and the quasi-classical
properties of the electrons in the high-magnetic-field limit. We have found that the plots of
the interaction energy versus magnetic field B are qualitatively the same for all N .

The inset of figure 2 shows the difference�E of the energies of the 1–5 and 0–6 phases
as a function of the magnetic field. The difference between the energies of the corresponding
classical Wigner molecules is equal to 0.44 meV. We see that �E is maximal for B � 15 T.
At higher magnetic fields, �E decreases and approaches its classical limit value. The
convergence to the classical value is slow and the limit is reached at infinite magnetic field.

Figure 3 shows the results for the ground-state configurations of the Wigner molecules with
N = 2, . . . , 20 electrons. We mark the different phases of the Wigner molecules by symbols
αi , βi and γi , where αi stands for the 0–i phase with i = N , βi denotes the i–(N − i) phase
and γi denotes the phase 1–i–(N − i − 1). The critical magnetic fields for the transformations
between the different phases of the N-electron system confined in the QD can be found from
the positions of the horizontal lines in figure 3. The uppermost horizontal solid lines show
the critical magnetic fields for the formation of the Wigner molecule determined from the
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Figure 3. Phase diagram for Wigner molecules. The MDD decay and formation of different
Wigner molecule phases is shown as a function of external magnetic field B and the number N of
electrons. The uppermost horizontal solid lines correspond to the critical magnetic fields for the
MDD decay, determined according to condition (I), described in the text. The horizontal dotted
lines correspond the critical magnetic fields, determined by condition (II). The different phases of
the Wigner molecules are marked by symbols αi , βi and γi , where αi denotes the 0–i configuration
with i = N , βi the i–(N − i) configuration, and γi the 1–i–(N − i −1) configuration. The asterisks
denote the phases for which the configuration of the Gaussian centres in basis (5) have been taken as
the scaled classical configuration corresponding to the local minima of the potential energy. Other
phases (without asterisks) have been obtained with the use of the additional Gaussian repulsive
core (equation (8)). (�) For N = 19 the 1–6–12 configuration becomes the ground state of the
electron system at B = 15.8 T.

peak positions of the electron–electron interaction energy (cf figure 2), i.e. according to the
condition which in the following will be referred to as condition (I). The dotted horizontal lines
correspond to the values of the magnetic field for which the ground-state energy calculated with
the multicentre basis becomes lower than the exact HF result for the MDD phase (cf figure 1),
i.e. according to the condition which will be referred to as condition (II). In our previous
paper [14] we used only condition (II) to determine the MDD breakdown. In figure 3 the
following new phases, α10, α11, α12, β1, β2 and β3, appear for N = 10, . . . , 16 in the range of
magnetic fields for which condition (I) is fulfilled and condition (II) is not yet fulfilled. These
new phases were absent in the phase diagram of [14].

The difference between the values of the critical magnetic fields determined according
to conditions (I) and (II) decreases with increasing number of electrons. For example, this
difference is equal to 0.7 T for N = 2 and 0.2 T for N = 20. The critical magnetic fields,
determined according to condition (I) seem to be more reliable, since when applying condition
(I) we are using the same method in order to estimate both the MDD and Wigner molecule
energies, i.e. the errors cancel out. The critical fields derived according to condition (II) result
from a comparison of the energy estimates obtained by the two different methods with different
accuracies.

According to figure 3, the Wigner molecule with N � 6 electrons possesses at least two
different ground-state configurations (phases). Each of these phases has the lowest energy
in different magnetic-field regimes. For N = 11, . . . , 16 electrons the Wigner molecule
phase emerging from the MDD and determined by condition (I) is replaced by another phase
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before condition (II) is fulfilled. The Wigner molecule phases marked by asterisks in figure 3
have been obtained using the positions of the centres of Gaussians (4) taken from the scaled
classical configurations obtained with the parabolic confinement potential. Nevertheless, not
all the configurations corresponding to the quantum ground state can be obtained with purely
parabolic confinement. In particular, the phases which appear just after the MDD breakdown,
and which correspond to the electrons gathering at the outer ring of the molecule, have to be
found by another method. In order to obtain the classical configurations for these phases of
the Wigner molecules, i.e. those not marked by the asterisks in figure 3, we have introduced
into the confining potential a weak Gaussian repulsive core

Urep = V0

K∑
i=1

exp[−(Rc
i /R0)

2], (8)

which acts on a limited number K of electrons. The repulsive core (8) induces the formation
of those molecules with a larger number of electrons on the outer ring. In the calculations we
have used R0 = 30 nm, V0 ∈ [2, 5] meV and K = N for phases αi , K = N − i for phases βi ,
and K = N − i − 1 for phases γi .

Figure 4 displays the results for the 10-electron MDD and for the 0–10, 1–9 and 2–8 phases
of the Wigner molecules. The energy is calculated with respect to the energy of the 2–8 phase,
which corresponds to the ground state in the high-magnetic-field limit. Crossing points (a),
(b) and (c) show the values of the critical fields corresponding to the phase transitions. Point
(a) corresponds to the breakdown of the MDD, obtained from condition (I). At this magnetic
field, the charge densities obtained with the multicentre bases go over into the molecular-type
charge densities. Above point (a), the ground-state energies, calculated with wavefunction (5)
for the 0–10, 1–9 and 2–8 configurations, become different. The 0–10 configuration possesses
the lowest energy up to point (b). At point (b), the ground-state energy obtained with the 0–10
and 1–9 multicentre bases crosses with the MDD energy, i.e. at this point condition (II) of the
MDD breakdown is fulfilled. Moreover, the ground-state Wigner molecule changes its shape
and above point (b) becomes the 1–9 configuration. Point (c) corresponds to the transition
between the 1–9 and 2–8 Wigner molecule phases. The evolution of the 10-electron density
distribution depicted in the insets of figure 4 indicates that the MDD decays from the centre
with the formation of a hole in the electron density (cf phase 0–10). This result is compatible
with the MDD breakdown mechanism proposed by Yang and MacDonald [13].

For the Wigner molecules with N � 20, considered in the present paper, we have found
that the largest number of different phases appears for N = 16. According to figure 3, the 16-
electron Wigner molecule can occur in five (four according to condition (II)) different phases,
which are stable in different magnetic-field regimes. The energy of these phases calculated
with respect to the energy of the high-field 1–5–10 phase is displayed in figure 5. The Wigner
molecule occurs in phases 3–13, 4–12 and 5–11 at B = 5.6, 5.8 and 6.25 T respectively.
We note that the transition of the 16-electron Wigner molecule into its ultimate phase 1–5–
10, which corresponds to the classical equilibrium configuration, appears at particularly high
magnetic field B = 9.8 T. This is apparently due to the fact that the classical 16-electron
molecule is the one in which the third ring is formed.

Figures 6 and 7 display the electron density distributions for N = 16 and 20 respectively.
We note that in the 1–6–13 configuration of the 20-electron Wigner molecule created just after
the breakdown of the MDD (cf figure 7 for B = 6 T) the maxima of the electron density
located on the outermost shell are much more pronounced (sharper) than those located on the
inner shells. In figures 6 and 7, the contour lines introduced for B = 6 T correspond to the
values of the charge density close to the maxima. We note that the maxima near the centre
of the charge distribution are flatter and possess a larger spatial extension than those at the
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Figure 4. Energy difference �E between the ground-state energies of the different phases for the
10-electron system confined in the QD and the ground-state energy of the high-field 2–8 phase
(broken horizontal line) as a function of magnetic field B . The dotted curve shows the results for
the MDD and the solid curves show the results for the Wigner molecules in phases 0–10 and 1–9.
Insets show the corresponding electron density distributions on the x–y plane (length is measured
in nanometres). Points (a), (b) and (c) are described in the text.

edge. This is a trace of the MDD breakdown mechanism via edge reconstruction [11]. We
will discuss this mechanism in section 4. At higher magnetic fields, all the electron density
maxima are equally sharp (cf figure 7 for B = 8 and 12 T).

4. Discussion

The results of the present calculations show that in the external magnetic field the Wigner
molecules undergo several ground-state transformations. Each of these transformations is
associated with a discontinuity of the first derivative of the ground-state energy (cf figures 1, 4
and 5) and a rapid change of the spatial symmetry of the electron density distribution.
Therefore, we can treat these transformations as phase transitions in a few-electron system.

We have found that a Wigner molecule with six or more electrons can appear in more than
one phase. The transitions between these phases, induced by the magnetic field, exhibit a certain
regularity. In the Wigner molecule phase formed from the MDD, the electrons prefer to occupy
the outer shells. For N = 6, . . . , 12 (N = 6, . . . , 10 according to condition (II)) the molecular
phases that emerge from the MDD consist of a single ring of electrons,while the quasi-classical,
high-field phases are composed of two rings. However, for N = 13, . . . , 17 (N = 11, . . . , 17
according to condition (II)) the molecules formed from the MDD are composed of two rings,
while the high-field phases consist of three rings. At higher magnetic fields, the larger number
of electrons starts to occupy the inner and middle shells. In the infinite magnetic field limit,
the space configuration of the electron distribution islands in the Wigner molecule exactly
corresponds to the equilibrium configuration of the classical charge carriers. For finite magnetic
fields, the average interelectron distances in the quantum and classical systems are different.
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Figure 5. Energy difference �E between the ground-state energy of the 16-electron system
confined in the QD and the ground-state energy of the high-field 1–5–10 phase (thin horizontal
line) as a function of magnetic field B . The dotted curve shows the results for the MDD, the solid
curves show the results for the Wigner molecule in 3–13 and 6–10 phases, and broken curves—for
4–12 and 5–11 phases.

Figure 6. Electron density distribution on the x–y plane for N = 16 electrons for several magnetic
fields. Contour lines drawn for B = 6 T correspond to the electron density close to the maximum.
Length is measured in nanometres.

Only in the limit B −→ ∞ do the average interelectron distances in the quantum Wigner
molecule become the same as those in the classical charge carrier system. Therefore, the
application of a high magnetic field to the electron system confined in a QD allows us to
observe a continuous transition from quantum mechanical to classical behaviour.
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Figure 7. Electron density distribution on the x–y plane for N = 20 electrons for several magnetic
fields. Contour lines drawn for B = 6 T correspond to the electron density close to the maximum.
Length is measured in nanometres.

In order to get a deeper insight into the physics of Wigner molecules we have considered
the different contributions to the ground-state energy. Figure 8 shows the expectation value of
the Coulomb interaction energy,

〈VC 〉 =
∫

d2r1 d2r2
κ

R
|ψR1(r1)|2|ψR2(r2)|2, (9)

calculated with ground-state wavefunctions (4) centred at R1 = (0, 0) and R2 = (0, R)
for fixed α� = α = eB/h̄ with B = 6 T. This energy is equal to the Hartree energy
of the interaction between the two electrons with Gaussian wavefunctions (4). We notice
that, contrary to the Coulomb interaction potential κ/R, the interaction energy 〈VC 〉 is non-
singular at R = 0, i.e. the interaction energy of the two spread charges is finite, in contrast
to the interaction energy of the two point charges. If the distance between the centres of
two Gaussians (4) exceeds ∼15 nm, the Hartree energy becomes larger than κ/R. At large
distances, 〈VC 〉 goes over into κ/R. In figure 8, we have also depicted the exchange integral

〈EX 〉 =
∫

d2r1 d2r2
κ

R
ψ∗

R1
(r1)ψR2(r1)ψ

∗
R2
(r2)ψR1(r2). (10)

For R = 0 the exchange and Hartree energies take on the same values. The exchange energy
rapidly decreases with R and becomes equal to zero, when the overlap between functionsψR1

and ψR2 vanishes. For R � 50 nm, the two Gaussian charge distributions interact as the
classical point charges. At higher magnetic fields, this effective interaction becomes classical
for smaller separations between the centres of the Gaussians.

Figure 9 displays the magnetic-field dependence of the nonlinear variational parameters
α� and σ in wavefunction (5) with configurations of the centres corresponding to the classical
molecule (phase 1–5). Figure 9(a) shows the variational parameters in the magnetic-field
regime that corresponds to the molecular phase (B > 5.1 T). We note that above the MDD
breakdown both σ and α�/α are larger than 1. In the Wigner molecules the distances between
the centres of the electron localization are of the order of 30 nm. For these distances the mutual
electrostatic repulsion between the Gaussian charge distributions is stronger than the repulsion
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Figure 8. Expectation values of the Hartree energy 〈VC 〉 (equation (9)) and exchange energy 〈EX 〉
(equation (10)) as functions of interelectron distance R. The Coulomb interaction potential energy
is shown by the dashed curve.

between point charges. Since σ > 1, the quantum Wigner molecule possesses a slightly larger
size than its classical counterpart. Moreover, in the Wigner molecule α� > α, which means
that the Gaussian charge distributions shrink as a result of the interelectron repulsion. In the
magnetic-field regime, in which the transitions between different Wigner molecule phases
appear, the nonlinear variational parameters deviate considerably from their high-field values
(cf figure 9(a) for small B). On the other hand, in the classical high-field limit α� −→ α,
i.e. the Gaussian electron distribution goes over into a delta-like electron localization, and
σ −→ 1, i.e. the electron configuration goes over into that of the classical charge system.

Figure 9(b) shows the changes in the variational parameters in the region of the
MDD/Wigner molecule phase transition. The scaling parameter σ takes on a much lower
value (∼0.6) for the MDD phase and rapidly jumps when the MDD decays and the molecular
phase is formed. The parameter α� exhibits a small jump at the MDD/Wigner molecule phase
transition.

Wavefunction (5) with the two variational parameters α� and σ is sufficiently flexible to
reproduce the properties of both the MDD and molecular phases. In the present HF method,
the Slater determinant is constructed from the orthogonalized wavefunctions constructed in
basis (5). Kainz et al [22] applied the symmetric-gauge form of wavefunction (4) with only
one variational parameter σ . In [22], the Slater determinant was constructed from the non-
orthogonal one-electron wavefunctions. Because of this non-orthogonality, the approach of
Kainz et al [22] is not equivalent to the HF method at finite magnetic fields. In particular, this
approach [22] fails to reproduce the MDD phase, which is probably caused by the fact that
every element of the Slater determinant is only one function of type (4), but not a superposition
of many such functions as in the present approach. Moreover, the authors [22] found only
minima of the total energy corresponding to the scaling parameter σ > 1, while in the present
calculations the MDD phase is obtained if σ is much smaller than 1. In the high-field limit,
orbitals (4) become orthogonal due to the lack of the overlap. Then, both the present method
and the approach of Kainz et al [22] work with the same precision.
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Figure 9. Nonlinear variational parameters α� and σ versus external magnetic field B for N = 6
obtained with the 1–5 multicentre basis. (a) The results for the Wigner molecule magnetic-field
regime. (b) The results for the magnetic-field regime near the MDD breakdown.

The instability of the MDD and the formation of a broken-symmetry phase of the
Wigner molecule in QDs was considered in [9, 11, 26–28]. The crossover from the Fermi
liquid to the Wigner molecule behaviour was studied both in the absence [26–28] and in the
presence [9, 11, 13, 29] of a magnetic field. In [9, 26–28], only a single phase of the Wigner
molecule was found. Manninen et al [29], using an exact diagonalization scheme, found the
ground state in the 0–6 configuration in the intermediate magnetic-field regime. In the present
paper we have found a similar effect.

Yang and MacDonald [13] obtained a redistribution of the electrons over the orbitals with
different angular momenta. They interpreted their results in terms of the holes, which arise
in the occupation number distribution. The occupation number distribution [13] cannot be
unambiguously translated into the spatial distribution of electrons, considered in the present
paper. According to the results of [13], the decay of the MDD for N = 2, . . . , 14 is
accompanied by one electron missing in the zero angular momentum state, which—in terms
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of the spatial electron distribution—means that the MDD decays from its centre with the
electrons gathering at the outer surface. This interpretation agrees with the results of the
present calculations. The results of the exact diagonalization performed by Manninen et al
[29] for the six-electron system also confirm this mechanism of the MDD breakdown.

However, Reimann et al [11], based on the results of the density functional approach,
suggest another mechanism for MDD breakdown via edge reconstruction [30]. According to
this mechanism, the MDD undergoes a transition into the Wigner molecule gradually, when
the cylindrically symmetric electron distribution of the MDD starts to break down from the
edge. Then, a ring of separately localized electrons emerges from the central flat maximum of
the electron distribution. The present results contradict this mechanism for N < 12. However,
in our opinion, edge reconstruction can indeed occur for a larger number of electrons. In
particular, the plots of the charge distribution presented in figures 6 and 7 indicate that during
the MDD breakdown the maxima corresponding to the electrons localized at the edge of the
electron distribution are sharper than the maxima corresponding to the electrons localized near
the centre of the QD. Therefore, based on the present results, we suggest that the MDD starts
to decay from the central part for N � 12 and from the edge for N > 12. Moreover, it is not
excluded that the MDD with fewer electrons decays via simultaneous central hole formation
and edge reconstruction.

Experimental evidence for the instability of the MDD phase was reported by Ooesterkamp
et al [19]. They measured the single-electron transport through a cylindrical gated QD in
a magnetic field and observed cusps on the plots, which determine the boundaries of the
transport windows [10]. The conditions of the single-electron tunnelling are determined by
the energy balance between the QD chemical potential (µN ) and electrochemical potentials of
the leads [10]. SinceµN = EN+1 − EN , where EN is the ground-state energy of the N-electron
system confined in the QD, the cusps of the function µN (B) are connected with the cusps of
EN (B), i.e. they result from the magnetic-field-inducedphase transitions. The additional cusps
were observed [19] at magnetic fields higher than those corresponding to the MDD breakdown.
Based on the present results, we suggest that these additional transitions [19] can be interpreted
as the phase transitions between the different phases of the Wigner molecules. A direct
experimental observation of the different electron spatial localizations in the different Wigner
molecule phases requires another type of measurement, e.g. wavefunction mapping [31].

5. Conclusions and summary

The present calculations have been performed under the assumption of rotational symmetry
of the QD confinement potential. The mean-field approaches lead inevitably to the broken-
symmetry solutions for the Wigner phase [8]. Cylindrical symmetry can be conserved by
the charge distribution calculated with the exact diagonalization schemes for the Wigner
phase [13, 29]. The present broken-symmetry distributions should be understood in terms
of the relative electron–electron positions. The rotation of the broken-symmetry electron
distribution by an arbitrary angle does not change the energy of the system. Therefore, the
ground state of the Wigner molecule is infinitely degenerate with respect to the orientation.
Taking this degeneracy into account, one can construct the proper ground state of the Wigner
molecule as the superposition of the rotated states associated with the particular space
configuration. Recently, Yannoulenas and Landman [23] have reconstructed the cylindrically
symmetric solutions using a post-treatment of the broken-symmetry HF solutions obtained
with a multicentre basis similar to our basis (5). If, however, the rotational symmetry of the
confining potential is slightly perturbed, the orientational degeneracy of the Wigner molecule
is lifted and the Wigner molecule should be pinned under a fixed angle. The pinning of
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the molecule under a fixed orientation is a necessary condition for direct observation of the
Wigner molecule by wavefunction mapping [31]. In real QDs, the rotational symmetry of the
confinement potential can be perturbed, e.g. because of the presence of impurities near the QD
region or imperfections of the nanostructure.

In summary, we have performed a systematic study of phase transitions in Wigner
molecules induced by an external magnetic field. We have proposed a multicentre Gaussian
basis for the N-electron system and shown that this basis is sufficiently flexible to reproduce the
properties of both the MDD and the molecular phases of the electron system. The results for
the MDD do not depend upon the choice of the configuration of the Gaussian centres. We have
determined the critical magnetic fields for the decay of the MDD into the molecular phase. The
values of these fields are different for the different phases of the Wigner molecule created. We
have found that the breakdown of the MDD is accompanied by a rapid jump of the electron–
electron interaction energy as a function of the magnetic field. In the magnetic-field regime
above the MDD breakdown, several molecular phases possess similar energies, but the phase
with the lowest energy cannot in general be identified with the lowest-energy configuration
of the classical point-charge system. We have shown that with increasing magnetic field the
Wigner molecule, which consists of six or more electrons, undergoes several phase transitions.
In particular, we have found new phases of the Wigner molecule which differ in their spatial
distribution of electrons. For comparison, the Wigner crystal, which is created in the many-
electron 2D system, possesses only one equilibrium phase with fixed (triangular) symmetry.
On the contrary, based on the present results we predict that the few-electron Wigner molecules
created in the QDs subjected to an external magnetic field are formed in several phases with
a different symmetry. We have found that a search for the cusps in the expectation value of
the electron–electron interaction energy as a function of the magnetic field can be proposed
as a new condition, which is suitable when determining the Wigner molecule formation from
the MDD phase. We have also suggested a solution to the controversy related to the possible
mechanism of the MDD/Wigner molecule transition. Based on the results of the present
paper, we suggest that for N � 12 the MDD decays from the centre, while for N > 12 edge
reconstruction appears.
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[28] Reusch B, Häusler W and Grabert H 2001 Phys. Rev. B 63 113313
[29] Manninen M, Viefers S, Koskinen M and Reimann S M 2001 Phys. Rev. B 64 245322
[30] Chamon C de C and Wen X G 1994 Phys. Rev. B 49 8227
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