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A theoretical description is presented for a single-electron transport through a vertical gated quantum
dot. Using the configuration interaction method we study the correlation effects in the gated quantum
dots. We have found that the electron-electron correlation only slightly changes the single-electron
tunnelling conditions in the absence of an external magnetic field, but has a pronounced influence on
the magnetic-field induced phase transitions in few-electron systems confined in quantum dots.

1 Introduction In a vertical gated quantum dot (QD) [1–3], a current between a source and drain is
controlled by a third electrode (gate). If the gate voltage applied is sufficient to empty the QD from
excess charge carriers, a small source-drain voltage causes that the single electrons can flow through
the nanodevice. The resulting source-drain current is tuned by the gate voltage. This means that the
nanodevice [1, 2], which contains the gated QD, can be treated as a prototype of a single-electron
transistor. Only at certain well-defined gate-voltage values the subsequent electrons tunnel via the QD.
Therefore, the single-electron transistor – as opposite to the conventional transistor – can be switched
on and turned off at different gate-voltage values.

The conditions of the single-electron tunnelling via the QD are determined by the electrochemical
potentials of the leads and the QD. The later is simply equal to the chemical potential (mNþ1) of the
N-electron system confined in the QD (artificial atom), which is defined as the difference between the
ground-state energies of the ðN þ 1Þ- and N-electron systems, i.e.

mNþ1 ¼ ENþ1 � EN : ð1Þ

The single electron can tunnel from the source with electrochemical potental ms through the QD, that
confines the N excess electrons, to the drain with electrochemical potential md under the following
condition:

ms � mNþ1 � md : ð2Þ

If condition (2) is fulfilled, we are speaking about an opening of the transport window. In the gated
QDs, the typical values of the few-electron ground-state energies are of the order of mili-electronvolts.
In order to determine the gate voltage, which will cause the single-electron tunnelling, with the re-
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quired precision, we need to know the N-electron energies with the uncertainty, which does not ex-
ceed a small fraction of meV. Therefore, we are dealing with the many-electron problem, which has to
be solved with a high precision. For the N-electron system the computational accuracy depends on
how exactly we can determine the potential confining the electrons in the QD and calculate the N-
electron energy. In our recent paper [4], we have elaborated a self-consistent method for solving the
underlying Poisson–Schr�dinger problem. In particular, the method [4] allowed us to calculate accu-
rately the confinement potential from the first principles of electrostatics. The confinement potential
appears to be a complex function of the gate voltage and number of electrons in the QD [4]. In Refs.
[4, 5], the Schr�dinger equation has been solved by the Hartree-Fock method, which neglects the
electron–electron correlation. The results [4] show a good agreement with experimental data in the
absence of a magnetic field, but systematic deviations of the theoretical results [5] from the experi-
mental data [1, 2] appear in the external magnetic field.

In the present paper, we extend the approach of Ref. [4] by applying the configuration interaction
(CI) method, which allows us to include the electron–electron correlation. We will study the influence
of correlation on the single-electron tunnelling conditions both with and without an external magnetic
field.

The paper is organized as follows: in Section 2, for the sake of completeness, we briefly describe
the self-consistent method [4] of solution of the Poisson–Schr�dinger problem, in Section 3, we intro-
duce the present CI approach, Section 4 contains the results, and Section 5 – the discussion and
conclusions.

2 Self-consistent solution of the Poisson–Schr�dinger problem The model nanodevice used in the
present calculations is depicted in Fig. 1. We put the boundary conditions on the surface shown by the
dashed line and solve the Poisson equation in the entire nanodevice with the QD region included.

The electrostatic field confining the excess electrons in the InGaAs QD is created by source, drain,
and gate electrodes, and ionized donor centers in n-GaAs layers. If there are N electrons, which are
localized in the QD occupying the atomic-like bound states, the confined charge creates the additional
electric field, which acts on the donors in the n-GaAs layers causing their ionization. This in turn
changes the net electrostatic field in the QD and the quantum states of the QD-confined electrons.
Therefore, the problem of the gated QD has to be solved self-consistently. A further complication
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Fig. 1 Model nanostructure used in
our calculations. Dashed line corre-
sponds to the cross section of the sur-
face, on which we put the boundary
conditions for the Poisson equation.

Fig. 2 Stability diagram with Coulomb diamonds at zero
magnetic field. The measured [2] differential conductance
is nearly zero in the grey areas. Solid (dashed) lines show
the boundaries of the transport windows calculated by the
CI (HF) method. The number of electrons (N) is fixed in
each Coulomb blockade region.



results from the fact that – even for a homogeneous distribution of the impurity centers in the n-GaAs
layers – the distribution of the ionized donors is inhomogeneous and depends on the number of
electrons confined in the QD [4].

The confinement potential is the sum of the double-barrier potential, which stems from the conduc-
tion-band offsets and confines the excess electrons in the vertical (z) direction, and the electrostatic
potential j1ðrÞ, which is responsible for the lateral confinement of the electrons in the QD. Potential
j1ðrÞ can be found from the Poisson equation

r2j1ðrÞ ¼ �rDðrÞ=e0es ; ð3Þ
where rDðrÞ is the space charge density, which originates from the ionized donors in the n-GaAs
layers, and es is the static dielectric constant of GaAs. The electrostatic field in the entire nanodevice
can be determined, if we take into account the additional electrostatic potential j2ðrÞ, which is
created by the N electrons confined in the QD. The QD-confined electrons exert outside the QD the
electrostatic field with the Hartree-type potential

j2ðrÞ ¼ � je
es

ð
d3r0

reðr0Þ
jr� r0j ; ð4Þ

where j ¼ 1=4pe0 and reðrÞ is the confined electron charge density. According to the superposition
principle, the total electrostatic potential in the nanodevice is the sum

FtotðrÞ ¼ j1ðrÞ þ j2ðrÞ : ð5Þ
Charge density rD in Eq. (3) can be determined as follows [4]. In the low-temperature regime, in

which the experiments [1,2] were performed, the thermal ionization of the donors can be neglected. In
this case, the donors become ionized under the action of the electrostatic field with potential (5). In
the nanodevice [1], the source and drain electrodes form ohmic contacts with the n-GaAs layers of the
modulated doping. Therefore, the donor energy level is aligned with the electrochemical potential of
the source (ms) at the source side of the nanodevice and that of the drain (md) at the drain side. The
ionization of the donor center at position r in the n-GaAs layer occurs if the total potential energy of
the electron in the electrostatic field with potential (5), i.e.

UtotðrÞ ¼ �eFtotðrÞ ; ð6Þ
exceeds the energy of the electron bound to the donor center, i.e. the corresponding electrochemical
potential. This leads to the following donor ionization condition:

UtotðrÞ > msðdÞ ð7Þ

for the source (s) and drain (d) side of the nanodevice. Condition (7) allows us to determine the
charge density rD in the following self-consistent manner: if condition (7) is fulfilled, then
rDðrÞ ¼ enDðrÞ, and rDðrÞ ¼ 0 otherwise, where nDðrÞ is the donor concentration in the n-GaAs layer.

The boundary conditions for the Poisson Eq. (3) are put on the total potential (5) and the boundary
values of the potential j1 needed to solve Eq. (3) are calculated from Eq. (5). For the source and
drain the corresponding boundary conditions have the form

FtotðrsðdÞÞ ¼ VsðdÞ ; ð8Þ
where Vs (Vd) is the source (drain) potential. At the gate surface, we take into account the Schottky
barrier of height fB, which leads to the following boundary condition:

FtotðrgÞ ¼ Vg � fB=e ; ð9Þ
where Vg is the gate voltage. According to Ref. [4], throughout the present paper, we take the com-
mon electrochemical potential of the source and drain in the absence of external fields (Fermi energy)
as the reference energy.

Due to the cylindrical symmetry of the nanodevice [1], the Poisson Eq. (3) has been solved in
cylindrical coordinates (q; z ). The numerical solutions [4] show that the lateral (q) dependence of the
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confinement potential is approximately parabolic. However, the non-parabolic corrections have to be
taken into account in the QD regions located farther from the cylinder axis [4].

3 Configuration interaction method We consider the N-electron artificial atom in an external mag-
netic field. In order to find the ground-state EN , we have to solve the N-electron eigenproblem with
the Hamiltonian

H ¼
PN
i¼1

hðriÞ þ
PN
i¼1

PN
j> i

je2

e1jri � rjj
; ð10Þ

where e1 is the high-frequency dielectric constant of the GaAs, which is responsible for the screening
of the electron–electron interaction [6]. In Eq. (10), ri are the position vectors of electrons and h is
the single-electron Hamiltonian, which in the symmetric gauge reads

hðrÞ ¼ � �h2

2me
r2 þ UconfðrÞ þ

1
8

mew
2
cðx2 þ y2Þ þ 1

2
�hwclz ; ð11Þ

where me is the electron effective mass, wc ¼ eB=me is the cyclotron frequency in magnetic field B,
and lz is the z component of the angular momentum operator. The confinement potential energy is
given by

UconfðrÞ ¼ �ej1ðrÞ þ UdbðzÞ ; ð12Þ
where UdbðzÞ is the potential energy of the electron in the double-barrier GaAs/AlGaAs/InGaAs layer
structure. In the present paper, we apply the following one-electron wave functions:

wðrÞ ¼
Pkxþky�k

kx;ky¼0
ckxkyx

kxyky exp ½�aðx2 þ y2Þ � bz2� ; ð13Þ

as the basis wave functions, where a and b are the non-linear and ckxky the linear variational param-
eters. In the vertical gated QD, the electrons are confined in the vertical (z) direction much more
strongly than in the ðx� yÞ plane. Therefore, in Eq. (13), we choose a single z-dependent Gaussian,
which is sufficient for a description of this motion, since all the confined electrons occupy the ground
state of the quantized motion in the z direction. In the calculations, we exploit the property of the
eigenstates of Hamiltonian (10), which possess the definite z components of the total angular momen-
tum and total spin.

One-electron wave functions (13) are used to construct the Slater determinants with the required
spin-orbital symmetry. In the framework of the CI method, the Slater determinants serve as a basis for
the diagonalization of the N-electron Hamiltonian (10). In this paper, we consider N ¼ 1; . . . ; 4 elec-
trons with the maximum value of the total angular-momentum quantum number Lmax ¼ 6. The actual
number of Slater determinants, used in the calculations, depends on the number of electrons N, total
angular momentum L, and total spin S. For example, for N ¼ 4, L ¼ 0, S ¼ �h, and k ¼ 5 we take into
account 2174 Slater determinants. According to the test calculations we performed, we obtain an
accuracy of a few hundredth of meV for the ground-state energy. We have introduced the CI method
into the self-consistent procedure of solving the Poisson–Schr�dinger problem as follows. When sol-
ving the Poisson Eq. (3), we are still using the Hartree potential [Eq. (4)], in which the confined
charge density re is taken from the Hartree–Fock (HF) solution of the Schr�dinger equation. The CI
method is only used to calculate the ground-state energy of the N-electron system confined in the QD,
i.e. to the solution of the Schr�dinger equation with Hamiltonian (10).

4 Results The stability diagram with the Coulomb diamonds is displayed in Fig. 2. The grey dia-
mond-shaped areas correspond to the measured [2] Coulomb blockade regimes of the gate and
source–drain voltages. In the transport measurements [2], the differential conductance is nearly zero
within the Coulomb diamonds and takes on appreciable values in the white areas. The solid (dashed)
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lines show the boundaries of the Coulomb diamonds
calculated by the CI (HF) method. We note that the
results obtained by the CI and HF methods are very
similar. They are significantly different only for the
right limits of the first diamond (N ¼ 1) and the left
limits of the second diamond (N ¼ 2). This differ-
ence results from the fact that the largest difference
between the chemical potentials calculated by the CI
and HF methods appears for N ¼ 2. According to
(2) chemical potential m2 determines the single-elec-
tron tunnelling in this region. Nevertheless, both the
HF and CI methods lead to results, which reproduce
the experimental data, with sufficient accuracy. In
particular, this means that the HF method works sur-

prisingly well for the gated QD. Small differences between the computational and experimental results
can be ascribed to some simplifications of the theoretical model, e.g. the real QD can exhibit a certain
deviation from the ideal cylindrical symmetry.

Single-electron transport via a gated QD is very sensitive to an external magnetic field [1, 2].
Figure 3 shows both the results of measurements [1, 2] and the present calculations. We see that the
results of the CI method (solid curves) are in a better agreement with experiment than those of the HF
method (dashed curves). This means that the correlation, which is included in the CI method and
neglected in the HF method, has a pronounced effect on the results in the presence of a magnetic
field. In Fig. 3, the cusps in the curves correspond to magnetic-field induced ground-state transforma-
tions in the confined N-electron system [5]. The HF method underestimates the critical magnetic
fields for these transformations.

5 Discussion and conclusions Single-electron tunnelling via gated QD depends on the chemical
potential of the artificial atom. According to (2) this chemical potential is the difference between the
ground-state energies of the ðN þ 1Þ- and N-electron systems. If both the EN and ENþ1 are calculated
with a comparable precision, the possible errors cancel out during the subtraction and chemical poten-
tial mN can be calculated quite accurately. This explains why the HF method leads to fairly good
results for the Coulomb diamonds (Fig. 2). The improvement obtained by the more exact CI method is
rather small. The magnetic-field induced phase transitions observed in the single-electron transport are
more sensitive to the electron–electron correlation. In particular, the critical-field values are much
better reproduced if we include the correlation by the CI method. This results from the fact that the
critical magnetic fields are determined by the ground-state energy EN rather than by the chemical
potential mN and the HF errors do not cancel out.

The external magnetic field changes the donor energy according to the formula

EDðBÞ ¼ EDð0Þ þ DEDðBÞ ; ð14Þ
where EDð0Þ is the ground-state donor energy for B ¼ 0. In the magnetic-field regime B 2 [0, 8 T],
the magnetic-field dependent shift of the donor ground-state energy can be expressed as follows:

DEDðBÞ ¼ l1Bþ l2B
2 þ l3B

3 ; ð15Þ
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where the values of the coefficients l1 ¼ 0:01988 T�1, l2 ¼ 0:05983 T�2, and l3 ¼ �0:00252 T�3

have been obtained from the accurate numerical solution of the donor problem in the magnetic field.
In Eq. (15), the energy is measured in meV and magnetic field in tesla (T). We note that Eqs. (14) and
(15) provide the corrected version of formula (5) in Ref. [5].

In the nanodevice [1], the electrochemical potentials of the source and drain determine the positions
of the donor energy levels in the n-GaAs layers. In the single-electron transport measurements [1, 2],
all the voltages are kept fixed. This means that the magnetic-field induced change of the electrochemi-
cal potential of the source (drain) by DEDðBÞ is accompanied with the same change of the electroche-
mical potential of the gate. This in turn leads to the corresponding shift of the confinement-potential
well bottom and – as a consequence – of all the energies, which enter into both the conditions of the
single-electron transport (2) and donor ionization (7). As a result, conditions (2) and (7) should not be
changed by the magnetic field. In Ref. [5], we have taken into account the magnetic-field induced
shift of the donor energy in the tunnelling conditions. However, the corrections taken into account
were very small. Therefore, the results of Ref. [5] exhibit negligibly small deviations from the present
HF results (Fig. 3).

Let us comment on the applicability of the present stationary approach to the dynamic single-elec-
tron tunnelling process. The single-electron tunnelling conditions (2) with the equality signs determine
the borders between the subsequent Coulomb blockade regions (cf. Fig. 2). The Coulomb blockade in
QDs is associated with the formation of the stationary state of the N-electron artificial atom. If the
gate voltage and/or the drain-source voltage cross the borders determined by condition (2), the number
of QD-confined electrons changes as either N ! N þ 1 or N þ 1 ! N. Then, the confined electron
system makes an abrupt transition to the stationary state of another system with the number of con-
fined electrons changed by one. This allows us to determine the positions of the current peaks from
conditions (2) with the equality signs. We note that the single-electron tunnelling is a spectroscopic
tool applied to the artificial atoms, which is similar to the conventional optical spectroscopy for the
natural atoms. The single-electron tunneling via the QD is an analog of the capture of the electron
and the subsequent ionization of the natural atom. In particular, the addition energy, defined as the
difference DmN ¼ mNþ1 � mN , is an analog of the difference between the ionization energy and elec-
tron affinity [3].

There were several theoretical attempts [7–11] to describe the single-electron transport in the verti-
cal gated QD [1]. The self-consistent solution of the Poisson and Schr�dinger equations was presented
in Ref. [7]. However, the authors [7] obtained only qualitative agreement with experiment [1]. The CI
calculations for the vertical QDs [1] were performed by Eto [8], who assumed a fixed parabolic
confinement potential. The assumption of the gate-voltage independent confinement potential did not
allow him to describe the single-electron transport in the gated QD in a quantitative manner. Also in
other theoretical papers [9–11] on gated QDs, the confinement potential was assumed of a fixed para-
bolic form. The results of our papers [4, 5] show that the dependence of the confinement potential on
the gate voltage and number of confined electrons is crucial for the quantitative description of the
electronic properties of the gated QD’s.

In summary, in the present paper, we have included the CI method into our self-consistent proce-
dure of solving the Poisson–Schr�dinger problem for the vertical gated QDs. We have shown that
electron–electron correlation plays an important role in the single-electron transport in an external
magnetic field.
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