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Theoretical description of electronic properties of vertical gated quantum dots
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A computational method for studying the electronic properties of vertical gated quantum dots is presented.
This method is based on the self-consistent procedure of the solution of the three-dimensional Poisson-
Schrödinger problem for few-electron systems confined in the quantum dots. In the present paper, we have
applied this method to a quantitative description of transport spectroscopy@S. Taruchaet al., Phys Rev. Lett.
77, 3613~1996! and L.P. Kouwenhovenet al., Science278, 1788~1997!# in vertical gated quantum dots of the
cylindrical symmetry. For the entire nanodevice we have obtained the realistic profile of the confinement
potential from the Poisson equation. This potential takes into account all the voltages applied to the leads, the
spatial distribution of the ionized donors, and numberN of electrons confined in the quantum dot. For smallN
the calculated lateral confinement potential is approximately parabolic, which supports the previous conjectures
that the two-dimensional harmonic-oscillator model can be used for a qualitative description of the gated
quantum dots. The present study shows that the approximate parabolicity of the lateral confinement potential is
a nontrivial property, since it results from a summation of nonparabolic contributions. The nonparabolic
corrections should be included in order to obtain an accurate quantitative description of the transport-
spectroscopy data. We have solved theN-electron Schro¨dinger equation by the unrestricted Hartree-Fock
method and calculated the chemical potential for the electrons confined in the gated quantum dot. The chemical
potential is found to be a nonlinear function of the gate voltage. We have determined the conversion factor,
relating the gate voltage with the energy scale, which enabled us to perform a direct quantitative comparison
of the computational results with the experimental data. The present results very well reproduce the measured
positions of the current peaks for small source-drain voltage. In particular, we have quantitatively described the
shell filling and Hund’s rule for artificial atoms. We have also determined the conditions of the single-electron
tunneling as functions of the source-drain voltage and the gate voltage and obtained the boundaries of the
Coulomb diamonds on the stability diagram. The calculated positions, sizes, and shapes of the Coulomb
diamonds are in a very good agreement with experiment. We have also evaluated the distribution of the ionized
donors and the surface charge induced on the gate and discussed the problem of screening of interelectron
interactions in the quantum dot by the electrodes.

DOI: 10.1103/PhysRevB.64.195303 PACS number~s!: 73.21.2b
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I. INTRODUCTION

A gated quantum dot~QD! can bind excess electrons in
confinement potential tuned by external voltages applied
the electrodes. The bound electrons form atomiclike bo
states, called artificial atoms.1 The discrete energy levels o
artificial atoms can be detected by a transport spectrosco2

which is based on single-electron tunneling. The verti
gated QD was fabricated and studied by transport spec
copy by Taruchaet al.,3 who obtained beautiful evidence fo
the shell filling in the artificial atoms. This study wa
extended3,4 to a nonzero bias and external magnetic field w
applied to the QD. In a recent paper,5 electron cotunneling
has been studied in gated rectangular QD’s. The spectac
results obtained by the groups of Tarucha3 and
Kouwenhoven4 have been quantitatively interpreted in o
paper.6 In other theoretical papers,7–15 the electronic proper-
ties of the gated vertical QD’s were studied mainly quali
tively with the use of the fixed confinement potential, i.
independent of the external electric fields and the numbe
electrons confined in the QD.

Besides the interesting physics of the single-elect
transport phenomena, the nanodevice3 is a prototype of a
single-electron transistor.16 The source, drain, and gate ele
trodes attached to the vertical QD~Ref. 3! allow to modify
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the single-electron tunneling through the QD, which leads
a transistor operation of the nanodevice. The single-elec
transistor3 is in the on state if the chemical potential of ele
trons confined in the QD falls into a transport window,17 i.e.,
takes on the values from the interval defined by the elec
chemical potentials of the source and drain. Then, the sin
electron tunneling takes place from the source via the QD
the drain. By changing the gate voltage we can reduce
tunneling current to zero, i.e., we can switch off the trans
tor. The off state of the single-electron transistor correspo
to the quantum Coulomb blockade,18 which results from a
misfit between the discrete energy levels~chemical poten-
tials! of the artificial atom and the transport window. Th
operation of the single-electron transistor can be explai
by the quantum mechanics that allow us to determine
energy levels of the confined electrons and the condition
the single-electron tunneling.

Several theoretical attempts7–15 were undertaken in orde
to describe the vertical gated QD. In Refs. 7, 8, 11, and 1
two-dimensional model with a parabolic confinement pote
tial was assumed. The three-dimensional confinement po
tial of the anisotropic harmonic oscillator was used in Refs
and 15. The effects of both the anisotropic harmon
oscillator potential and the anharmonic corrections w
studied in Ref. 13. Nagarajaet al.10 solved the Schro¨dinger
©2001 The American Physical Society03-1
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and Poisson equations for a model perpendicular nanos
ture with two electrodes attached and obtained a qualita
description of the shell filling. The qualitative picture of th
shell filling has also been obtained by Steffenset al.12 and
Rontaniet al.14 However, to the best of our knowledge, on
in our study6 was the Poisson-Schro¨dinger problem solved
for the real QD nanostructure3 with all the voltages applied
to the electrodes taken into account, which allowed us
obtain a quantitative agreement with the experimental dat3,4

The previous paper6 was a preliminary announcement
our results for the vertical gated QD. The present paper c
tains a complete description of the method proposed by u
order to solve the Poisson-Schro¨dinger problem for the gated
QD. Our approach is sufficiently general to be applicable
a three-terminal nanodevice of arbitrary symmetry. Here,
show the application of this method to the vertical gated Q
of the cylindrical symmetry.3,4 Contrary to Ref. 6, in which
donor concentrations and layer thicknesses were treate
fitting parameters, in the present paper, we have used
nominal values of these parameters,19 which we received
from the authors.19 The present calculations, performed wi
the material data,19 have led to much better agreement w
experiment. In particular, we have obtained 12 Coulomb d
monds~instead of six diamonds as in Ref. 6! in very good
agreement with experiment.4

The present paper is organized as follows: in Sec. II,
formulate the theoretical method and provide some resu
which illustrate our approach, in Sec. III, we present t
main numerical results and compare them with the exp
mental data, Sec. IV contains a discussion, and in Sec.
found a summary.

II. THEORY

A. Real and model nanostructure

The real nanostructure3 was fabricated from the
multilayer GaAs/AlGaAs/InGaAs heterostructure. It consi
of a QD region made of In0.05Ga0.95As, which is surrounded
by two Al0.22Ga0.78As barriers and a ring-shaped Schott
gate. Each barrier adheres to an undoped GaAs spacer
close to which there are stepwise dopedn-GaAs layers. The
n-GaAs layers are terminated by the heavily doped Ga
layers~with the donor concentration 231018 cm23), which
form Ohmic contacts, i.e., the drain~top! and the source
~bottom! electrodes.3 The nanostructure was etched to form
cylindrical pillar to a plane just below the lower~thinner!
AlGaAs barrier. The nanostructure is asymmetric with
spect to thez50 plane~the z coordinate is measured alon
the cylinder axis andz50 corresponds to the center of th
InGaAs layer!. The upper part of the nanodevice is the c
lindrical pillar and the lower~substrate! part consists of the
nonetched GaAs layers. However, all the experimen
results,3,4 in particular, the Coulomb diamonds on the stab
ity diagram,4 are almost perfectly symmetric with respect
the drain-source polarity. Therefore, we apply the mo
nanostructure, which is nearly symmetric with respect to
z50 plane, but we take into account the different widths
the AlGaAs barriers.3,4,19In the model nanostructure~Fig. 1!,
the pillar has been replaced by the mirror reflection of
19530
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substrate part of the nanodevice. Therefore, then-GaAs lay-
ers and the gate electrode are expanded up to infinity, wh
enables us to put the boundary conditions needed for a s
tion of the Poisson equation. In the present work, we h
taken on the nominal values19 of layer thicknesses, dono
concentrations, and material compositions.

B. Artificial atom

Excess electrons confined in the QD form atomicli
bound states with discrete energy levels. Therefore, the
with the confined electrons can be treated as an artifi
atom.1 The number of the confined electrons depends on
depth and range of the confinement-potential well. These
rameters determine the so-called ‘‘quantum capacity’’20 of
the dot. The characteristic features of electronic shells of
artificial atom are determined by the symmetry and profile
the potential confining the electrons. In the present work,
solve the eigenvalue problem for the many-electron artific
atom by the Hartree-Fock~HF! method. According to this
approach, each electron in the QD is subjected to the s
consistent field stemming from the other electrons confin
in the QD and the confinement with potential ener
Ucon f(r ), which is treated as the potential energy of an e
ternal field. The electron confinement results from the dou
AlGaAs/InGaAs/AlGaAs barrier, which limits the electro
motion in thez direction, and electrostatic potentialw1(r ),
which stems from all the charges in the nanodevice, excl
ing the charge confined in the QD. In particular, potent
w1(r ) gives rise to a lateral confinement. The resulting p
tential energy of the electron confined in the QD can
written as

Ucon f~r !5Udb~z!1U1~r !, ~1!

FIG. 1. Schematic of the model nanodevice. Given are the do
concentrations and layer thicknesses, used in the calculations.
boundary conditions for the Poisson equation are put on surfacS
with outer radiusRb . R is the inner radius of the gate.
3-2
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THEORETICAL DESCRIPTION OF ELECTRONIC . . . PHYSICAL REVIEW B 64 195303
whereUdb(z) is the double-barrier potential energy,U1(r )
52ew1(r ), ande.0 is the elementary charge.

C. Electrostatic field and its sources

We aim to solve the complex many-electron quantu
mechanical problem in three-dimensional space. In orde
make this problem tractable we separate out the excess
trons confined in the QD, which are treated in the framew
of quantum mechanics, from the other sources of the elec
field, which are calculated from the Poisson equation. T
total electrostatic field in the nanodevice is a superposition
the fields stemming from both kinds of sources. The el
trons confined in the QD give rise to the electrostatic pot
tial w2(r ), while the other sources contribute tow1(r ). The
total electrostatic potential in the nanodevice is given by
sum

w tot~r !5w1~r !1w2~r !. ~2!

Both the components of potential~2! originate from the dif-
ferent sources and play diverse roles in the HF meth
Therefore, they will be calculated separately and with diff
ent accuracy. Potentialw2(r ) is calculated with the use o
one-electron wave functionscn(r ) obtained from the HF
procedure, i.e.,

w2~r !52
e

4p«0«s
(
n51

N E d3r 8
ucn~r 8!u2

ur2r 8u
, ~3!

whereN is the number of excess electrons confined in
QD, the sum runs over all the occupied one-electron sta
and«s is the static dielectric constant.

Potentialw1 is calculated from the Poisson equation

¹2w1~r !52
%D~r !

«0«s
, ~4!

where%D(r ) is the charge density of the ionized donors.
Eq. ~4!, we take on«s to be the static dielectric constant o
GaAs and neglect its changes in the heterostructure, sinc
sources of the electrostatic field with potentialw1 are local-
ized within then-GaAs layers. The voltages applied to th
gate, source, and drain are included via the boundary co
tions ~cf. Sec. II D!. We put the boundary conditions on tot
potentialw tot(r ) and calculate the boundary values of pote
tial w1(r ) from Eq.~2!. This is an important step, resulting i
the avoidance of computational problems, which are inhe
in another possible approach23 based on image charges of th
QD-confined electrons. The present approach allows u
incorporate~with controllable precision! all the quantities
that determine the distribution of electrostatic field in t
nanodevice.

In the nanodevice,3 we can distinguish two parts, sep
rated by the double tunnel barrier, consisting of the don
doped GaAs layers attached to the two leads. The source
drain Ohmic contacts are made of the heavily dopedn-GaAs
layers. This means that the donor energy level is aligned w
the electrochemical potential,ms(d)5F2eVs(d) , of the
source~drain!, whereF is the common Fermi energy of th
19530
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source and drain. The ionized-donor charge density, nee
to solve Eq.~4!, is determined by the donor ionization con
dition, which can be derived as follows. We assume that
electron bound to the donor center at positionr in the
n-GaAs layer can be removed to an adjacent reser
~source or drain! if the total potential energy of the electro

Utot~r !52ew tot~r ! ~5!

exceeds the electrochemical potential of the reservoir. Th
fore, we neglect the thermal ionization of the donors. T
assumption is justified, since the experiments3 on the vertical
gated QD’s were performed at low temperatures~the electron
temperature was estimated to be;0.2 K). In this paper, we
take the common Fermi energy,F, of the source and drain a
the reference energy, which leads to the following formu
for the charge density of the ionized donors:

%D~r !5H enD~r !, if Utot~r !.2eVs(d) ,

0, otherwise,
~6!

wherenD(r ) is the donor concentration. We assume that
donors are uniformly distributed within then-GaAs layers
and approximate their concentration by stepwise continu
distribution ~cf. Fig. 1!. Throughout the present paper, th
potential of the source is set equal to zero.

D. Boundary conditions

In view of the arguments given in Sec. II C, we put th
boundary conditions on the total potential@Eq. ~2!# on sur-
faceS ~Fig. 1! and calculate the boundary values of potent
w1(r ) from Eq. ~2!. Accordingly, the boundary condition
take the form

w tot~r s!5Vs50 ~7!

for the source and

w tot~rd!5Vd5Vds ~8!

for the drain, whereVds is the drain-source voltage. Since th
metal gate is in contact with the undoped semiconductor
ers, we take into account a Schottky barrier of heightfB at
the metal-semiconductor interface. Therefore,

w tot~rg!5Vg2fB /e, ~9!

whereVg is the gate voltage. In Eqs.~7!, ~8!, and~9!, r s , rd ,
and rg are the position vectors of the points on the surfa
of the source, drain, and gate, respectively. As the electro
do not form the closed surface, which surrounds a domain
the solution of the Poisson equation, we enclose this dom
with the cylindrical surface, which has the lower and upp
base placed on the internal surfaces of the source and d
respectively~cf. Fig. 1!. The outer radius of this cylindrica
surface is denoted byRb . The values of potentialw1(Rb ,z)
provide the boundary conditions for Eq.~4!. In the limit Rb
→`, the electrostatic field between the source and drai
parallel to thezaxis due to the planar structure of then-GaAs
layers. In this case, we can determine the boundary co
tions for Eq.~4! from the one-dimensional Poisson equati
3-3
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d2

dz2
w1~Rb ,z!52

%D~Rb ,z!

«0«s
. ~10!

The boundary conditions for Eq.~10! are reduced to putting
the values ofw1 in the two points lying on the internal sur
faces of electrodes. We determine these boundary condit
with the help of Eq.~2! and the values ofw tot given by Eqs.
~7!, ~8!, and ~9! with the left-hand sides taken at poin
(Rb ,zs), (Rb ,zd), and (Rb ,zg), wherezs , zd andzg , are the
z coordinates of the source, drain, and gate, respectively.
cause condition~6! links the right-hand side of Eq.~10! with
the potential, Eq.~10! has to obey the additional condition
which is obtained as follows. The negative external gate v
age leads to the ionization of donors in accordance with c
dition ~6!. The ionized donors weaken the effect of the a
plied voltage and—as a result—the region of t
nanostructure, in which the donors are ionized, has a fi
extension. The corresponding range (zs and zd! of the ion-
ization of the donors~measured from the dot center towar
the source and drain! is implicitly defined by the two condi-
tions, which—for the source—take on the form

w tot~Rb ,zs!50 ~11!

and

d

dz
w tot~Rb ,z!uz5zs

50. ~12!

For the drain, in the first condition, we put

w tot~Rb ,zd!5Vds , ~13!

while in the second condition@Eq. ~12!# we substitutez
5zd . Conditions~11!, ~12!, and ~13! mean that thez com-
ponent of the electric field is fully screened and vanish
outside the region of the ionization of the donors. The so
tions of Eq.~10! provide the boundary conditions for Eq.~4!.
Figure 2 shows the boundary values of potential ene
U1(Rb ,z)52ew1(Rb ,z) as functions of gate voltageVg
and coordinatez. The applied drain-source voltage leads
the asymmetry, which is visible in the inset in Fig.
Namely,U1(Rb ,z)→10 meV forz→zd .

We assume that the solutions of Eq.~10! are valid for the
finite, large enoughRb , which enables us to use the fini
computational box in the numerical calculations. The cho
of Rb is discussed in Sec. II E.

E. Numerical integration of the Poisson equation

Poisson Eq.~4! has been solved by the finite-differenc
relaxation method in the cylindrical coordinates (r,z) on the
two-dimensional mesh (r i5 iDr,zj5 j Dz), where i
50,1, . . . ,50 andj 52100, . . . ,100. The region of integra
tion has been chosen as follows: 0<r<Rb and zd<z<zs .
The numerical integration of the Poisson equation yields
values of potentialw1 on the mesh, i.e.,w1(r i ,zj ). Figure 3
shows the calculated potential energyU152ew1 as a func-
tion of r and z coordinates. In order to obtain the total p
tential energy we have to add toU1 the double-barrier con
tribution Udb(z) @cf. Eq. ~2!#. This potential energy is nex
19530
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used in the HF calculations for the electron system confi
in the QD. Since the potential well inUdb(z) is narrow, i.e.,
potentialw1(r,z) as a function ofz only slightly changes in
the QD region, we can neglect thez dependence of potentia
w1 ~cf. Fig. 3!. In the HF method, it is more convenient t
use an analytical formula for the potential. For this purpo
we have fitted a polynomial, which interpolates between
numerical valuesw1(r,0). Wehave found that the six-orde
polynomial of the form

w̃~r!5 (
m50

3

vmr2m ~14!

is necessary to fit accurately the numerical solution in
entire QD region, i.e., from the cylinder axis to the ga
surface. In Fig. 4, we display the numerical solutions to
Poisson equation, adjusted analytical expression~14!, and
the parabolic approximations of the numerical solutions
ted in the region occupied by the confined electrons.

FIG. 2. Boundary conditions foruVdsu510 mV shown as po-
tential energyU1(Rb ,z)52ew1(Rb ,z) as functions of coordinate
z and gate voltageVg . The inset shows the enlargement of th
region near the drain, in whichU1→2eVds510 meV.

FIG. 3. Potential energyU152ew1, calculated from the Pois-
son equation forVg522 V, Vds50, andN50, as a function of
cylindrical coordinatesr andz.
3-4
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Figure 5 shows the dependence of coefficientsv0 andv1

of polynomial~14! on radiusRb , at which we put the bound
ary conditions when solving the Poisson equation~cf. Sec.
II D !. In the intervalRb.300 nm, these coefficients are a
most independent ofRb , which allows us to determine th
actual value ofRb . In the present calculations, we hav
taken Rb5350 nm. We have checked that takingRb

.350 nm does not change the coefficients in Eq.~14!
within the accuracy of four decimal digits.

FIG. 4. Potential energyU152ew1 obtained from the numeri-
cal solution~dots! of the Poisson equation, the sixth-order polyn
mials ~solid curves!, fitted to all the numerical solutions, and th
parabolic fits~dashed curves!, adjusted to the numerical solution
lying below the shifted Fermi energyF0, as functions ofr andVg

for Vds50. The QD confinesN51, 7, and 12 electrons forVg5
21.9 V, 21.5 V, and 21 V, respectively. Thin solid curves
show the charge density~in arbitrary units! associated withN elec-
trons confined in the QD. Solid horizontal line is drawn at ene
F0, i.e., the Fermi energy of the leads decreased by the sp
quantized ground-state energy of the one-electron motion in tz
direction.

FIG. 5. Coefficientsv0 ~solid curve, left scale! andv1 ~dashed
curve, right scale! of adjusted polynomial@Eq. ~14!# as functions of
outer radiusRb of surfaceS, on which we put the boundary con
ditions for the Poisson equation.
19530
F. Hartree-Fock method

The N-electron Schro¨dinger equation has been solved b
the unrestricted HF method. For the sake of completen
we briefly describe this method. The HF equations have
form

Fscns~r !5enscns~r !, ~15!

whereFs are the Fock operators,cns(r )[cn(r ) are the one-
electron wave functions,n denotes the set of orbital quantu
numbers, ands is the spin quantum number (s5a,b, where
a511/2 and b521/2). The Fock operators possess t
forms

Fa5h1 (
n51

N1

~Jna2Kna!1 (
m51

N2

Jmb ~16!

and

Fb5h1 (
n51

N2

~Jnb2Knb!1 (
m51

N1

Jma , ~17!

where h is the one-electron Hamiltonian of noninteractin
electrons, andN1 and N2 denote the numbers of electron
with spin1\/2 and2\/2, respectively. The Coulomb (Jms)
and exchange (Kms) operators are defined by the formulas

Jms~r i !cns~r i !5F E d3r jcms* ~r j !
e2

4p«0«`r i j
cms~r j !Gcns~r i !

~18!

and

Kms~r i !cns~r i !

5F E d3r jcms* ~r j !
e2

4p«0«`r i j
cns~r j !Gcms~r i !,

~19!

wherer i j 5ur i2r j u is the interelectron distance. The intera
tion between the electrons confined in the QD is screened
a high-frequency dielectric constant«` .22 Contrary to the
electrostatic field@cf. Eq. ~3!# that mainly acts outside the
QD, the electron-electron interaction is not screened by
phonons.22

In the effective-mass approximation

h52
\2

2me
¹21Uext~r !, ~20!

where the potential energy of the electron in the exter
field is taken to be@cf. Eq. ~1!#

Uext~r !5Ucon f~r !5Udb~z!2ew̃~r!, ~21!

and potentialw̃ is defined by Eq.~14!. The HF equations
have been solved by variational means with one-elect
wave functions expanded in the Gaussian basis,

cns~r !5(
pqr

cns
pqrgpqr~x,y,z!, ~22!

y
e-
3-5
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where

gpqr~x,y,z!5xpyqexp@2a r~x21y2!2bz2#, ~23!

cns
pqr , a r , andb are the variational parameters, and the su

run overp,q50,1, . . . , p1q<4, andr 51,2,3.

G. Self-consistent procedure

We use the solutions of the HF equations to calculate t
energy EN of the N-electron system confined in the QD
EnergyEN depends on the profile of the electrostatic pote
tial in the nanodevice, which is affected by the distribution
the ionized donors inn-GaAs layers. The systems of th
electrons confined in the QD and the ionized donors in
n-GaAs layers are coupled by the Coulomb interaction. B
cause of the mutual dependence of the density of the c
fined electrons and the distribution of the ionized donors@cf.
condition ~6!#, the Poisson-Schro¨dinger problem for the en
tire nanodevice has to be solved self-consistently. For
purpose we have applied the iterative procedure depicte
the block diagram~Fig. 6!. In Fig. 6, the two iteration loops
are displayed. In the inner loop~labeledn), we calculate
charge density%D of the ionized donors and electrostat
potentialw1 for a given distribution of the confined charg
carriers. The inner loop is terminated if the self-consisten
of the confinement-potential energy@Eq. ~1!# is reached. The
outer loop ~labeled i ) assures the self-consistency of t
charge distribution of the electrons confined in the QD a
the electrostatic potential in the nanodevice. In the first s

FIG. 6. Block diagram of the self-consistent Poisson-Hartr
Fock procedure. A detailed description is given in the text.
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of the iterative procedure, the distribution of the confin
charge carriers is taken on to be that of the point charge oN
electrons, i.e.,w252Ne/4p«0«sr . The Poisson equation i
solved for the electrostatic potential in the entire nanodev
which allows us to determine the distribution of the ioniz
donors in then-GaAs layers. Next, the calculated confin
ment potential is used as the external potential in the
equations. The solutions of the HF equations enable u
calculate theN-electron energyEN and the confined charge
carrier distribution. The last quantity is reintroduced into t
Poisson equation. The iterations run until a convergence
EN is reached. The convergence of the present procedu
very fast, in particular, the outer loop has to be executed
or three times only.

H. Conditions of the single-electron tunneling

The transport-spectroscopy measurements3 are based on
single-electron tunneling via the nanostructure. The con
tions of the single-electron tunneling24,25 are determined by
the electrochemical potentials of the source (ms) and drain
(md) and the chemical potential of the electrons confined
the QD, which is defined as

mN115EN112EN . ~24!

A single electron can tunnel from the source to the dr
through the QD that containsN bound electrons, if24,25

ms>mN11>md . ~25!

At the reverse bias, i.e.,Vds,0, the electron can tunnel from
the drain to source. Then, in condition~25!, the signs of
inequalities have to be changed. During the single-elect
tunneling process the number of excess electrons localize
the QD fluctuates as follows:N→N11→N→•••. If condi-
tions~25! are not fulfilled, the flow of current is blocked, i.e
we deal with the quantum Coulomb blockade.18 Due to the
equality signs in condition~25!, the single-electron tunneling
can occur even at zero drain-source voltage. Then,

ms5mN115md . ~26!

This condition allows us to determine the positions of curr
peaks measured forVds.0.

I. Parameters of the model nanostructure

In the present paper, we have used the nominal values19 of
the layer thicknesses and donor concentrations in the n
structure~cf. Fig. 1!. Moreover, we have taken on the ele
tron effective mass of In0.05Ga0.95As to be26 0.0643 of the
electron rest mass and neglected the small jump of the e
tron effective mass at the InGaAs/AlGaAs interface, sin
the electron bound-state wave function very weakly p
etrates into the barrier region. We neglect the changes
dielectric constants at the interfaces and take«s513.2 appro-
priate for GaAs~Ref. 27! and «`511 for In0.05Ga0.95As.28

The height of the Schottky barrier at the GaAs/metal int
face fB is taken to be 0.65 eV.29 The shape of the double
barrier potential energyUdb(z) in the GaAs/AlGaAs/InGaAs
heterostructure is given by

-

3-6
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Udb~z!5H 0, for the GaAs spacers,

Ub , for the Al0.22Ga0.78As barriers,

Uw , for the In0.05Ga0.95As quantum dot.
~27!

In the calculations, we have takenUb5240 meV~Ref. 27!
and Uw5259 meV, estimated from the gap difference30

We have checked that the change ofUw within physically
acceptable limits does not change the relative values of
calculated chemical potentials, which—according to E
~26!—determine the positions of current peaks.

Since the cylindrical pillar has been obtained in the et
ing process,16 the inner radiusR of the gate cannot be accu
rately measured. Before the etching process16 the nanostruc-
ture was covered with the circular drain of the radiusRd

5250 nm. Inner gate radiusR has to be smaller than th
drain radius, i.e.,R,Rd , which accounts for an undercut i
the cylindrical pillar.3 In the present calculations, we hav
adjusted the value ofR in order to reproduce the exact pos
tions of the current peaks measured3 as a function of the gate
voltage at the small drain-source voltage. For this purp
we proceed as follows: according to condition~26! of the
single-electron tunneling atVds50, we calculate chemica
potentialsmN for N51, . . . ,12 and for thegate-voltage val-
uesVg(N) that correspond to the measured current peak
the small bias.3 Therefore,N simultaneously denotes the su
sequent number of the current peak. If the gate radius ha
correct value, calculated chemical potentialsmN11 are equal
to the common Fermi energy of the source and drain, i.e.,
chemical potential is independent ofN. For the incorrectly
chosen value ofR, condition~26! is not fulfilled. The depen-
dence of the calculated chemical potential onN is shown in
Fig. 7 for R5220.0 nm~crosses!, 223.4 nm~circles!, and
226.0 nm~triangles!. In Fig. 7, the circles can be approx
mately aligned on the horizontal straight line. In this ca
the chemical potential of the QD-confined electrons is in
pendent ofN, which allows us to determine the inner ga
radius. In the following, we takeR5223.4 nm.

In Fig. 7, the left energy scale corresponds to the res
obtained with the potential-well depthUw @Eq. ~27!# taken as
the band-gap difference,30 which corresponds to 100%
conduction-band offset. Under this assumption, the m
value of the calculated chemical potentials is placed 9.5 m
below the conduction-band minimum of the GaAs spac
This value determines the relative position of the Fer
level. However, the Fermi level should be located at the
nor energy level, i.e., 5.8 meV below the GaAs conductio
band bottom. Therefore, potential-well depthUw should be
raised by the difference of the above values, which yie
Uw5255.3 meV. This value corresponds to 94
conduction-band offset, which is larger than the publish
values 46%–83% for the InAs/GaAs quantum wells.31 The
larger conduction-band offset for the gated QD can re
from the presence of the leads in the nanodevice. We n
that this change of the confinement-potential-well depth d
not change the relative values of the chemical potentials,
the addition energies. In Fig. 7, the zero is put at
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conduction-band bottom of the GaAs spacer on the left sc
and is shifted to the Fermi level of the leads on the rig
scale.

Figure 7 also illustrates how sensitive the present res
are on the choice of the inner radius of the gate. The sm
change ofR leads to a noticeable upward or downward ben
ing of themN@Vg(N)# curves.

In Fig. 7, the chemical potential forN58 exhibits the
largest deviation from the Fermi energy. However, in th
case, the chemical potential calculated for the lowest-ene
excited state of the eight-electron system is exactly equa
the Fermi energy~cf. the full square atN58 in Fig. 7!.
Therefore, we tentatively ascribe the eighth current peak
the tunneling via the first-excited state. A more detailed d
cussion of this effect is given in Sec. IV.

III. RESULTS

A. Confinement potential

The calculated profile of the total confinement-potent
energy~with the double-barrier potential included! is shown
in Fig. 8 as a function of cylindrical coordinatesr and z.
Figure 8 provides an illustration of the potential-ener
variation in the central part of the nanodevice.

Let us turn back to Fig. 4, which shows the solutions
the Poisson equation as well as the charge density assoc
with N electrons confined in the QD. NumberN of the con-
fined electrons increases with the increasing gate volta
The confined electrons are localized in the central region
the QD and very weakly penetrate into the region, in wh
the potential energy exceeds the energies of the occu

FIG. 7. Chemical potential calculated with the gate-voltage v
ues Vg(N), which correspond to the subsequent current peakN
measured by Taruchaet al.3 The symbols~crosses, circles, and tri
angles! display the results obtained forR5220.0 nm, 223.4 nm,
and 226.0 nm, respectively. The square forN58 shows the result
obtained under the assumption of tunneling via the first-exc
state. Thin solid curves serve as guides for the eye. On the
~right! scale, the zero is at the conduction-band minimum of
GaAs spacer~the common Fermi energy of the source and drain!.
3-7
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one-electron states~cf. thin solid curves in Fig. 4!. For Vds
50, i.e.,ms5md5F, the one-electron energies@Eq. ~15!# do
not exceed the Fermi energy of the source and drain,
ens<F. According to Fig. 4, the movement of the QD
confined electrons is limited to this region of space, in wh
the potential energy does not exceed the Fermi energy.
the noninteracting electrons the one-electron Schro¨dinger
equation with Hamiltonian~20! and potential energy~21! can
be separated into two eigenequations, which describe th
plane and vertical motion. Thus, the one-electron grou
state energye0 is a sum of the lowest eigenvaluese' andez
of both the eigenproblems, i.e.,e05e'1ez . The one-
electron wave function is localized within the region a
proximately limited by the following inequalities:Udb(z)
<ez in the vertical direction andU1(r)<e' in the plane
within the InGaAs layer. This means that—on theU1 vs r
plot ~Fig. 4!—the region in which the electrons are localiz
can be bounded by the inequalityU1(r)<F0, where F0
5F2ez is the Fermi energy decreased by the ground-s
energy of the space-quantized motion in thez direction. We
have calculated energyez , which is independent of the gat
voltage and donor concentration, with the variational wa
function being the singlez-dependent Gaussian. This yield
the estimate ofez.28 meV above the bottom of the InGaA
potential well, i.e., 27.3 meV below the GaAs conductio
band minimum. According to the discussion given in S
II I, the Fermi energy lies 5.8 meV below the GaA
conduction-band minimum. The difference of the last tw
values~21.5 meV! provides the estimate ofF0, which can be
interpreted as the maximum value of potential energyU1(r),
above which the charge density of the confined electr
vanishes~cf. Fig. 4!.

In the region of the localization of electrons, total pote
tial energyUtot @Eq. ~5!# also lies belowF0. In this region of
the QD, lateral confinement-potential energyU1(r) is an
approximately parabolic function ofr ~Fig. 4!. Nevertheless,

FIG. 8. Confinement-potential energyUcon f @Eq. ~1!# as a func-
tion of cylindrical coordinatesr andz in the central region of the
QD.
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the nonparabolicity ofU1(r) is also visible in Fig. 4. For a
small number of the QD-confined electrons the nonparab
corrections are noticeable beyond the region occupied by
electrons~cf. the results forVg521.9 V in Fig. 4!. The
nonparabolic corrections start to play a role in a descript
of QD-confined electrons32 if the number of electrons ex
ceeds;12. This property, obtained by us from the se
consistent solution of the Poisson equation, is in a full agr
ment with the conclusions21 based on experiment.

We have studied the physical origin of the lateral confin
ment potential in more detail. Figure 9 displays the resu
for Vg521 V, which correspond toN512 electrons bound
in the QD. Potentialw1 can be decomposed into the sum
the following two components:~i! the potential created by
the leads forN50 and~ii ! the potential of the response o
the nanodevice on the presence ofN electrons in the QD.
Component~ii ! takes into account the screening of the ele
trostatic field of the QD-confined electrons by the leads. F
ure 9 shows that the approximate parabolicity of the late
potential energy of the electron is a result of the summat
of the two clearly nonparabolic contributions. Therefore, t
approximate parabolicity of the lateral confinement poten
appears to be a nontrivial and unexpected property.

The effect of the charge confined in the QD on the pot
tial energy is shown in Fig. 10. When varying the gate vo
age we change the quantum capacity of the QD.20 If the gate

FIG. 9. Potential energyU1 of the lateral confinement~solid
curve! and its two components: the potential energy of the em
QD ~dashed curve! and the potential energy resulting from the r
sponse of the nanodevice on the presence ofN512 electrons in the
QD ~dotted curve!, as functions of radial cylindrical coordinater.
The results are displayed forVg521 V. Shifted Fermi energyF0

is depicted by the thin solid line.
3-8
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voltage increases, taking on the smaller absolute values~Fig.
10!, the QD traps the subsequent electrons, which in t
ionize more donors inn-GaAs layers. This leads to the ste
wise behavior of potential energyU1 ~Fig. 10!. Figure 10
shows how strongly the electrons confined in the QD mod
the confinement potential. This modification appears to
essential in the operation of the nanodevice.

B. Quantum Coulomb oscillations and Coulomb diamonds

The upper panel of Fig. 11 displays the chemical poten
calculated forVds50. The zero on the energy scale corr
sponds to the common Fermi energy of the source and d
According to condition~26!, a single electron can tunne
through the nanodevice if the chemical potential of t
N-electron system confined in the QD is aligned with t
source and drain electrochemical potentials. The cros
points ofmN with the abscissa very well agree with the e
perimentally measured3 positions of current peaks, shown b
thin vertical lines on Fig. 11. The unequal spacings betw
the subsequent peaks result from the shell filling of the a
ficial atoms.3,4 In particular, in Fig. 11, the distinctly large
separations between the second and third, and the sixth
seventh vertical lines correspond to the filling of the first a
the second electronic shell, respectively, while the sligh
larger separations between the fourth and fifth, and the n
and tenth vertical lines correspond to the half filled she
i.e., Hund’s rule.

In the lower panel of Fig. 11, we report the results of t
present calculations for the gate-voltage-to-energy con
sion factor, which is defined as follows:

aN~Vg!5
]mN

]Vg
U

Vds50

. ~28!

In Fig. 11, we have plottedaN vs the gate voltage only fo
the values ofVg close to the current peak positions. Th
calculated conversion factor allows us to transform
chemical potential into the gate voltage. Therefore, we

FIG. 10. Potential energyU152ew1 as a function of gate volt-
ageVg , radial cylindrical coordinater, and numberN of electrons
confined in the QD. Thick solid line corresponds to shifted Fer
energyF0.
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able to perform a direct comparison between the calcula
chemical potentials and measured gate voltages, which
respond to the current peaks. The calculated values of
conversion factor show an overall agreement with the exp
mentally determined values of this quantity.3,4,21 In particu-
lar, the absolute values ofaN decrease with increasingN.21

However, we note that the experimental values of the c
version factor have been estimated from the geometric s
of the Coulomb diamonds4 taken at the nonzero source-dra
voltage and under the assumption that half of the app
drain-source voltage is effective at the QD position.

The results for the nonzero drain-source voltage are
ported in Fig. 12. The experimental points in the shad
areas correspond to the nonzero differential conductan4

The solid curves show the calculated boundaries between
regimes of zero and nonzero conductance. The curves
the positive and negative slope correspond tomN115ms and
mN115md , respectively. All the solid curves have been o
tained for tunneling via the corresponding ground state. T
dashed curves display the results obtained under the ass
tion of tunneling via the first-excited state of the eigh
electron system. The calculated boundaries of the Coulo
blockade regions very well agree with the measured p
tions, sizes, and shapes of the 12 Coulomb diamonds.

C. Induced-charge density

The operation of the nanodevice3 is strongly dependent on
the charge distribution of the ionized donors. This quantity

i

FIG. 11. Chemical potentialmN , calculated forVds50 ~upper
panel!, and conversion factoraN , defined by Eq.~28!, plotted as
functions of the gate voltage and numberN of the electrons con-
fined in the QD. The single-electron tunneling takes place ifmN

5F50. The measured positions of current peaks, taken from R
3, are shown by thin vertical lines.
3-9
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hardly accessible in experiment; however, the present c
putational method provides a useful tool for determining
Figures 13~a!–13~d! depict the results of the present calcu
tions. Figures 13~a! and 13~b! show the induced space
charge density forVg521 V andVg522 V, respectively.

FIG. 12. Stability diagram with Coulomb diamonds. Sol
curves show the calculated boundaries of the single-electron tun
ing @cf. condition ~25!# via the N-electron ground states. Dashe
curve corresponds to the tunneling of the eighth electron via
first-excited state. Dots~shaded areas! show the experimental data4

In the white diamond-shaped regions, the number of the Q
confined electrons is fixed and equal toN.
19530
-
.

In both cases, there are no electrons confined in the QD
Vds50; therefore, the space charge is induced by the g
voltage only. The stepwise increase of the induced-cha
density corresponds to the stepwise increasing concentra
of donors in the subsequentn-GaAs layers. The space, occu
pied by the ionized donors, extends if the gate voltage
lowered. The effect of the charge confined in the QD
shown in Fig. 13~c!. The QD-confined electrons additionall
induce the space charge in the central part of the nanode
In Figs. 13~a!, 13~b!, and 13~c!, the induced space-charg
distribution is almost symmetric with respect to the inversi
in the z50 plane. The small difference in the barrier width
causes a slight asymmetry. The pronounced asymmetr
the induced-charge distribution appears under the app
bias. This effect is illustrated in Fig. 13~d! for Vds
550 mV. The real nanodevice3 consists of the threen-GaAs
layers. The present numerical results show that the don
become ionized in two layers only, i.e., only the twon-GaAs
layers adjacent to the double-barrier heterostructure ef
tively screen the electric field in the nanostructure. This c
clusion is valid for the nanodevice parameters quoted in F
1.

Having at our disposal the potential profile determined
the entire nanodevice, we can find the surface charge indu
at the gate electrode. For this aim, we have solved the
verted Poisson equation, i.e., Eq.~4!, in which potentialw1 is
known and the charge density is sought at the gate sur
r5rg . The calculated surface density of the charge indu
at the gate is depicted in Fig. 14. The negative values of

el-

e

-

e
-

e

FIG. 13. Ionized-donor charge
density induced inn-GaAs layers
shown in the cross section of th
cylindrical nanodevice as a func
tion of cylindrical coordinatesr
and z. The white, grey, and dark
grey regions correspond to charg
density %D50, 131017, and 1.4
31017 @e/cm3#, respectively.
Shown are the results for~a! Vg

521 V, Vds50, N50, ~b! Vg

522 V, Vds50, N50, ~c! Vg

521 V, Vds50, N512, and~d!
Vg521 V, Vds550 mV, N
50. N is the number of electrons
confined in the QD region, which
is located close toz5r50.
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induced surface charge assure the charge neutrality of
nanostructure. The characteristic peaks account for the l
electric-field gradient at the gate edges.

IV. DISCUSSION

In the present paper, the Schro¨dinger equation has bee
solved by the HF method, in which the electron-electron c
relation is neglected. In our previous paper,33 we have quan-
titatively determined the effect of correlation for the thre
dimensional two-electron system in a parabolic isotropic a
anisotropic confinement potential. Our study33 has shown
that the HF and exact results very well agree with each o
for the QD’s of small and intermediate size, which corr
sponds to the range of the confinement potential up
;100 nm. Taking on the model parabolic anisotrop
confinement33 with the parameters compatible with the ve
tical gated QD,3 we have estimated the inaccuracy of the H
ground-state energy to be;1 meV for the two-electron sys
tem. It is known that—in the quantum-mechanical calcu
tions for natural atoms—the HF method works better for
atoms with the larger number of electrons. The inaccur
caused by the neglected electron-electron correlation ca
responsible for the small deviations of the calculated che
cal potentials from the Fermi energy~cf. Fig. 7!.

The chemical potential calculated for the ground st
of the eight-electron system exhibits the largest deviat
from the Fermi energy. In the eight-electron ground sta
the electrons occupy the following spin orbital
(1s↑)(1s↓)(1p1↑)(1p1↓)(1p2↑)(1p2↓)(1d1↑)(1d2↑),
i.e., five spin orbitals with spin up and three spin orbita
with spin down.~The orbitals with the azimuthal quantum
number l 50, 1, and 2 are denoted bys, p, and d,
respectively.! The energy of this ground state is very clo
to the energy of the first-excited state, in which t
following spin orbitals are occupied by the electron

FIG. 14. Surface charge density~in units e/nm2) of the charge,
induced at the surface of the gate, plotted as a function of cylin
cal coordinatesr andz.
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(1s↑)(1s↓)(1p1↑)(1p1↓)(1p2↑)(1p2↓)(1d1↑)(1d1↓),
i.e., four spin orbitals with spin up and four spin orbitals wi
spin down. The chemical potentials calculated with this fir
excited-state energy exactly agree with the Fermi energy
the source and drain~Fig. 7! and lead to a good agreeme
between the calculated and measured boundaries of the
lomb diamonds~cf. dashed curves in Fig. 12!. This would
lead to a suggestion that the eighth electron may tunnel
the first-excited state. However, since no selection rules s
port this suggestion, this problem requires further study.

The chemical potentials can also be changed by the
isotropy of the nanostructure,34 which can essentially chang
the rotational symmetry of the confinement potential.34 In the
perpendicular gated QD’s, studied by Austinget al.,34 the
confinement potential possesses an ellipsoidal symme
However, in the cylindrical QD’s,3 the anisotropy can be
treated as a small perturbation, which slightly shifts t
chemical potentials for the few-electron systems.6

The confinement potential depends on the number of e
trons confined in the QD. This leads to the problem of t
rate of relaxation of the ionized-donor distribution durin
single-electron tunneling via the QD. The following questi
arises: how fast does the ionization of donors follow t
change of the number of QD-confined electrons? In orde
answer this question we consider two extreme mechani
of the rapid and slow relaxation during tunneling of the (N
11)th electron via the nanodevice. According to the rap
relaxation mechanism, the donors immediately follow t
presence of each additional electron in the system. There
the electronic component of potential@Eq. ~3!# should origi-
nate from the actual number of the QD-confined electrons
this case, the energiesEN11 and EN , needed to determine
chemical potential@Eq. ~24!#, should be calculated with the
use of the different confinement potentials. We have p
formed the calculations according to this mechanism a
found that the results do not reproduce the tunneling-cur
peaks correctly.

The slow-relaxation mechanism corresponds to the re
nant tunneling. Then, during the flow of the single electr
through the QD, the response of the donor system on
change of the number of excess electrons is extremely s
Therefore, both the energiesEN11 andEN should be calcu-
lated with the same confinement potential. In the pres
paper, we provide the results obtained under assumptio
slow relaxation. They are in a very good agreement w
experiment. It is interesting that we obtain agreement w
experiment if we calculateEN andEN11 taking the confine-
ment potential forN as well asN11 electrons confined in
the QD. In both cases, the chemical potentials are appr
mately placed on two horizontal straight lines~like the one
shown in Fig. 7!, which are slightly shifted~by 2 meV! with
respect to each other. These results strongly support
slow-relaxation mechanism with the average number of c
fined electrons betweenN and N11. Additionally, the lack
of hysteresis of the measured current-gate-volta
characteristics3,4 provides experimental support21 for the
slow-relaxation mechanism.

In the gated nanodevice,3 screening of the electrostati
potential is very important.23 The present approach takes th

i-
3-11



o
do
d
e-

ou
e
, t

p
th
tio

od
ng
gle
.
D
f

e

on
’s
e

ha
on

th
te
d
th
re

th

e
s.
e

be
ity
tr
th
.
on

e
5

A
to
le
th

i
a
n
o

the
nd
ysi-
di-
ce.
ith

had
e 7
tron

so-
-
, we
dot
led

ne-
at-
on-
the
e-
ese
stic
u-
of
ara-
m
or

ted
lic,
o-

e-
the
pa-
tive
m-
rmi
city

a-
he
ing

mi-
e

ctor,
m-
For
ons
cale
we
’s

D.
ero
the
ia-
pes
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screening into account via the proper boundary conditions
lead surfaces and the incorporation of the ionization of
nors. An alternative~and equivalent! method was propose
by Bruce and Maksym,23 who considered the gated nanod
vice, but with different structure.35 The authors23 introduced
the image charges in order to take the screening into acc
and obtained the nonparabolicity of the confinement pot
tial as a result of screening. Contrary to the present paper
authors23 considered the nanodevice35 in which all the do-
nors were ionized. The present approach seems to be sim
since we obtain the confinement potential directly from
Poisson equation without a need of the additional calcula
of the Green function like in Ref. 23.

The present results show that—in the three-electr
nanodevice3—it is not possible to account for the screeni
of the electron interactions within the dot by either a sin
effective dielectric constant or a single screening function36

This screening results from the charge induced by the Q
confined electrons. The induced charge is located too
from the QD region, i.e., in then-GaAs layers and the remot
gate electrode~cf. Figs. 13 and 14!, in order to be effective in
the direct screening of the electron-electron interacti
within the QD. The problem of screening in the gated QD
is much more complicated than that of screening via an
fective medium. Nevertheless, this complex problem
been solved in the present paper. The calculated resp
potential ~cf. dotted curve in Fig. 9! shows the effect of
screening of the interactions between the electrons within
QD by the leads. We have shown that—in the vertical ga
QD—the screening depends on external voltages applie
the electrodes, the distribution of ionized donors, and
charge confined in the QD. Therefore, its determination
quires the self-consistent solution of the Poisson-Schro¨dinger
problem for the entire nanodevice, which was done in
present work.

The problem of the nonparabolicity of the lateral confin
ment potential has been discussed in the relation with Fig
and 9. Here, we summarize this discussion by a statem
that the lateral confinement potential is almost parabolic
low the Fermi level and exhibits the distinct nonparabolic
near and above the Fermi level. Due to the complex elec
statics of the nanodevice, the approximate parabolicity of
lateral confinement potential is ana priori unexpected result
As shown in Fig. 9, both the components of the lateral c
finement potential are clearly nonparabolic.

In other theoretical papers, agreement with experim
data3 was claimed for the addition energy, e.g., Ref. 1
However, the addition energy, defined asDmN5mN11
2mN , can be extracted from the experimental data only
the gate-voltage-energy conversion factor is known.
shown in the lower panel of Fig. 11, the conversion fac
strongly depends on the gate voltage and the number of e
trons confined in the QD. These effects are neglected if
confinement potential is fixed as in Ref. 15.

In the present paper, good quantitative agreement w
experiment3,4 has been obtained with the use of nomin
values19 of the layer thicknesses and donor concentratio
The values of the effective band masses and dielectric c
stants have been taken from the literature.26–28We have also
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taken on reliable values of parameters characterizing
AlGaAs/InGaAs/AlGaAs double-barrier heterostructure a
checked that the changes of these parameters within ph
cally acceptable limits have a negligible effect on the con
tions of the single-electron tunneling via the nanodevi
Only the inner radius of the gate cannot be measured w
sufficient precision. Therefore, in the present paper, we
to treat this radius as the adjustable parameter. Figur
shows how sensitive the conditions are of the single-elec
tunneling on the small changes of the gate radius.

V. SUMMARY

We have elaborated the self-consistent method of the
lution of the Poisson-Schro¨dinger problem for the three
electrode QD-based nanodevice. In the present paper
have applied this approach to the vertical gated quantum
of the cylindrical symmetry. The present method has enab
us to determine the three-dimensional profile of the confi
ment potential, calculated from first principles of electrost
ics. We have taken into account the number of electrons c
fined in the QD, the voltages applied to the leads, and
distribution of the ionized donors. The calculated confin
ment potential exhibits a complex dependence on th
quantities. We have shown that the evaluation of the reali
confinement potential is of crucial importance for an acc
rate quantitative description of the electronic properties
the nanodevice. We have discussed the problem of nonp
bolicity of the lateral confinement potential and the proble
of screening of interelectron interactions within the QD. F
small N and the energy below the Fermi level the calcula
lateral confinement potential is approximately parabo
which supports the previous conjectures that the tw
dimensional harmonic-oscillator model qualitatively d
scribes the properties of the artificial atoms formed in
nanostructure. Nevertheless, the incorporation of the non
rabolic corrections is necessary for an accurate quantita
description. The deviations from the parabolicity become i
portant for largeN and the energies near and above the Fe
level. We have also shown that the approximate paraboli
of the lateral confinement potential results from the summ
tion of the two clearly nonparabolic contributions. One of t
components of the confining potential includes the screen
of the electron field within the QD by the leads.

We have calculated the chemical potential forN electrons
confined in the vertical gated QD and found that the che
cal potential is a nonlinear function of the gate voltage. W
have evaluated the gate-voltage-energy conversion fa
which enabled us to perform a direct comparison of the co
putational results with the transport-spectroscopy data.
the very small drain-source voltage the calculated positi
of the single-electron current peaks on the gate-voltage s
very well agree with the experimental data. In particular,
have quantitatively described the shell filling and Hund
rule for the artificial atoms formed in the vertical gated Q
We have also performed the calculations for the nonz
drain-source voltage, which allowed us to determine
boundaries of the Coulomb diamonds on the stability d
gram. We have obtained the positions, sizes, and sha
3-12
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of the Coulomb diamonds in very good agreement with
periment.
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