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Theoretical description of electronic properties of vertical gated quantum dots
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A computational method for studying the electronic properties of vertical gated quantum dots is presented.
This method is based on the self-consistent procedure of the solution of the three-dimensional Poisson-
Schralinger problem for few-electron systems confined in the quantum dots. In the present paper, we have
applied this method to a quantitative description of transport spectro$€pharucheet al, Phys Rev. Lett.

77, 3613(1996 and L.P. Kouwenhoveat al, Science278 1788(1997)] in vertical gated quantum dots of the
cylindrical symmetry. For the entire nanodevice we have obtained the realistic profile of the confinement
potential from the Poisson equation. This potential takes into account all the voltages applied to the leads, the
spatial distribution of the ionized donors, and numNResf electrons confined in the quantum dot. For srhall

the calculated lateral confinement potential is approximately parabolic, which supports the previous conjectures
that the two-dimensional harmonic-oscillator model can be used for a qualitative description of the gated
guantum dots. The present study shows that the approximate parabolicity of the lateral confinement potential is
a nontrivial property, since it results from a summation of nonparabolic contributions. The nonparabolic
corrections should be included in order to obtain an accurate quantitative description of the transport-
spectroscopy data. We have solved fikelectron Schrdinger equation by the unrestricted Hartree-Fock
method and calculated the chemical potential for the electrons confined in the gated quantum dot. The chemical
potential is found to be a nonlinear function of the gate voltage. We have determined the conversion factor,
relating the gate voltage with the energy scale, which enabled us to perform a direct quantitative comparison
of the computational results with the experimental data. The present results very well reproduce the measured
positions of the current peaks for small source-drain voltage. In particular, we have quantitatively described the
shell filling and Hund’s rule for artificial atoms. We have also determined the conditions of the single-electron
tunneling as functions of the source-drain voltage and the gate voltage and obtained the boundaries of the
Coulomb diamonds on the stability diagram. The calculated positions, sizes, and shapes of the Coulomb
diamonds are in a very good agreement with experiment. We have also evaluated the distribution of the ionized
donors and the surface charge induced on the gate and discussed the problem of screening of interelectron
interactions in the quantum dot by the electrodes.

DOI: 10.1103/PhysRevB.64.195303 PACS nuntder73.21-b

[. INTRODUCTION the single-electron tunneling through the QD, which leads to
a transistor operation of the nanodevice. The single-electron
A gated quantum doQD) can bind excess electrons in a transistot is in the on state if the chemical potential of elec-
confinement potential tuned by external voltages applied térons confined in the QD falls into a transport windb,e.,
the electrodes. The bound electrons form atomiclike boundakes on the values from the interval defined by the electro-
states, called artificial atonisThe discrete energy levels of chemical potentials of the source and drain. Then, the single-
artificial atoms can be detected by a transport spectroscopyelectron tunneling takes place from the source via the QD to
which is based on single-electron tunneling. The verticathe drain. By changing the gate voltage we can reduce the
gated QD was fabricated and studied by transport spectrosanneling current to zero, i.e., we can switch off the transis-
copy by Taruchat al,®> who obtained beautiful evidence for tor. The off state of the single-electron transistor corresponds
the shell filing in the artificial atoms. This study was to the quantum Coulomb blockad®&which results from a
extended” to a nonzero bias and external magnetic field wagmisfit between the discrete energy levéthemical poten-
applied to the QD. In a recent papeelectron cotunneling tials) of the artificial atom and the transport window. The
has been studied in gated rectangular QD’s. The spectaculaperation of the single-electron transistor can be explained
results obtained by the groups of Taruthaand by the quantum mechanics that allow us to determine the
Kouwenhovef have been quantitatively interpreted in our energy levels of the confined electrons and the conditions of
papef® In other theoretical papefs!®the electronic proper- the single-electron tunneling.
ties of the gated vertical QD’s were studied mainly qualita- Several theoretical attempts® were undertaken in order
tively with the use of the fixed confinement potential, i.e.,to describe the vertical gated QD. In Refs. 7, 8, 11, and 12, a
independent of the external electric fields and the number dfwvo-dimensional model with a parabolic confinement poten-
electrons confined in the QD. tial was assumed. The three-dimensional confinement poten-
Besides the interesting physics of the single-electrorial of the anisotropic harmonic oscillator was used in Refs. 9
transport phenomena, the nanodevViee a prototype of a and 15. The effects of both the anisotropic harmonic-
single-electron transistdf. The source, drain, and gate elec- oscillator potential and the anharmonic corrections were
trodes attached to the vertical QRef. 3 allow to modify  studied in Ref. 13. Nagarajet al° solved the Schidinger
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and Poisson equations for a model perpendicular nanostruc- B 2R
ture with two electrodes attached and obtained a qualitative D
description of the shell filling. The qualitative picture of the
shell filling has also been obtained by Steffetsall? and
Rontaniet al* However, to the best of our knowledge, only GaAs (2 x 10 'em”, 180nm)
in our study was the Poisson-Schiimger problem solved
for the real QD nanostructutevith all the voltages applied

ohmic contact (drain)

GaAs (1.4 x 10 'cm”, 150nm)

to the electrodes taken into account, which allowed us to GalAs (1x 10" cm”, 70nm)

obtain a quantitative agreement with the experimental #ata. 2 E—=—GaAs (3nm)
The previous pap&mwas a preliminary announcement of £ ﬁ'gj:ss (?122::)) =

our results for the vertical gated QD. The present paper con- = NI S ‘g

tains a complete description pf the method proposed by us in v 1; 3 2 GaAs (3nm)

order to solve the Poisson-Schinger problem for the gated GaAs (1x10 cm ", 70nm)

QD. Our approach is sufficiently general to be applicable to GaAs (1.4x 10 'cm”, 150nm)  e— 3

a three-terminal nanodevice of arbitrary symmetry. Here, we —

show the application of this method to the vertical gated QD GaAs (2x 10 cm , 180nm)

of the cylindrical symmetry:* Contrary to Ref. 6, in which SHMiE CRTACE [S5UTES)

donor concentrations and layer thicknesses were treated as | 2R, J

fitting parameters, in the present paper, we have used the * g

nominal values of these parametetsyhich we received FIG. 1. Schematic of the model nanodevice. Given are the donor

from the authors? The present calculations, performed with concentrations and layer thicknesses, used in the calculations. The
the material data; have led to much better agreement with boundary conditions for the Poisson equation are put on suBace
experiment. In particular, we have obtained 12 Coulomb diawith outer radiusR,, . R is the inner radius of the gate.
monds(instead of six diamonds as in Ref) i very good

ag[rert]ement with expenlmef‘lt. ized as foll “in Sec. |l substrate part of the nanodevice. Therefore,rit@aAs lay-

e present paper is organized as follows: in Sec. Il, Wey g g the gate electrode are expanded up to infinity, which
formulate the theoretical method and provide some results,, 565 ys to put the boundary conditions needed for a solu-
which illustrate our approach, in Sec. lll, we present th‘thion of the Poisson equation. In the present work, we have

main lejmencgl rels\ljlts anq comg_are thgm W'tg .theSeXp\e/”_faken on the nominal valuEsof layer thicknesses, donor
mental data, Sec. IV contains a discussion, and In Sec. 'Soncentrations, and material compositions.

found a summary.

Il. THEORY B. Artificial atom

Excess electrons confined in the QD form atomiclike
_ bound states with discrete energy levels. Therefore, the QD

The real nanostructute was fabricated from the \th the confined electrons can be treated as an artificial
multilayer GaAs/AlGaAs/InGaAs heterostructure. It consistsziom?! The number of the confined electrons depends on the
of a QD region made of fpsGay osAS, Which is surrounded  gepth and range of the confinement-potential well. These pa-
by two Alg,/Gay7¢As barriers and a ring-shaped Schottky rameters determine the so-called “quantum capaéfhof
gate. Each barrier adheres to an undoped GaAs spacer layg{e dot. The characteristic features of electronic shells of the
close to which there are stepwise dopeGaAs layers. The artificial atom are determined by the symmetry and profile of
n-GaAs layers are terminated by the heavily doped GaAshe potential confining the electrons. In the present work, we
layers(with the donor concentration210*® cm ), which  solve the eigenvalue problem for the many-electron artificial
form Ohmic contacts, i.e., the draiftop) and the source atom by the Hartree-FockHF) method. According to this
(bottom electrodes. The nanostructure was etched to form aapproach, each electron in the QD is subjected to the self-
cylindrical pillar to a plane just below the lowéthinne)  consistent field stemming from the other electrons confined
AlGaAs barrier. The nanostructure is asymmetric with re-in the QD and the confinement with potential energy
spect to thez=0 plane(the z coordinate is measured along Uconi(r), Which is treated as the potential energy of an ex-
the cylinder axis ana=0 corresponds to the center of the ternal field. The electron confinement results from the double
InGaAs layeJ. The upper part of the nanodevice is the cy- AlIGaAs/InGaAs/AlGaAs barrier, which limits the electron
lindrical plllar and the Iowel(SUbStra'E pal’t consists Of the motion in thez direction, and electrostatic potentiah(r),
nonetched GaAs layers. However, all the experimentalyhich stems from all the charges in the nanodevice, exclud-
reSUItS?’4 in particular, the Coulomb diamonds on the Stabil'ing the Charge confined in the QD In particu'ar, potential
ity diagramy are almost perfectly symmetric with respect to (1) gives rise to a lateral confinement. The resulting po-
the drain-source polarity. Therefore, we apply the modetential energy of the electron confined in the QD can be
nanostructure, which is nearly symmetric with respect to theyritten as
z=0 plane, but we take into account the different widths of
the AlGaAs barriers:*'%In the model nanostructus€ig. 1),
the pillar has been replaced by the mirror reflection of the Uconi(F)=Ugp(2) +U4(r), (1)

A. Real and model nanostructure
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where U yp(2) is the double-barrier potential enerdy,(r) source and drain. The ionized-donor charge density, needed

=—ep4(r), ande>0 is the elementary charge. to solve Eq.(4), is determined by the donor ionization con-
dition, which can be derived as follows. We assume that the
C. Electrostatic field and its sources electron bound to the donor center at positionn the

. n-GaAs layer can be removed to an adjacent reservoir
We aim to solve the complex many-electron quantum-

mechanical problem in three-dimensional space. In order tc()source or drainif the total potential energy of the electron
make this_prob_lem tractable we separate out the excess elec- Utot(r) = —€@io(r) (5)
trons confined in the QD, which are treated in the framework ) ) )

of quantum mechanics, from the other sources of the electrigxceeds the electrochemical potential of the reservoir. There-
field, which are calculated from the Poisson equation. Théore, we neglect the thermal ionization of the donors. This
total electrostatic field in the nanodevice is a superposition ofSSumption is justified, since the experiméuis the vertical

the fields stemming from both kinds of sources. The elecgated QD's were performed at low temperatutes electron
trons confined in the QD give rise to the electrostatic poteniéMmperature was estimated to b®.2 K). In this paper, we

tial ¢,(r), while the other sources contribute ¢q(r). The take the common Fermi enerdy, of the source and drain as

total electrostatic potential in the nanodevice is given by théhe reference energy, which leads to the following formula
sum for the charge density of the ionized donors:

P10(1) = @2(r) + @(r). @ = & T Uiad)> =€V,
%o 0, otherwise,

(6)
Both the components of potentig?) originate from the dif-
ferent sources and play diverse roles in the HF methodwherenp(r) is the donor concentration. We assume that the
Therefore, they will be calculated separately and with differ-donors are uniformly distributed within the-GaAs layers

ent accuracy. Potentiap,(r) is calculated with the use of and approximate their concentration by stepwise continuous
one-electron wave functiong ,(r) obtained from the HF distribution (cf. Fig. 1). Throughout the present paper, the

procedure, i.e., potential of the source is set equal to zero.
N
os(F) = — f d3r,|l/fy(r')|2 3 D. Boundary conditions
ATegeg p=1 [r—r’] In view of the arguments given in Sec. Il C, we put the

boundary conditions on the total potentj&lq. (2)] on sur-

vagertehl;l Issurt:eruainl)t\)/zrr (:;I ?ﬁgesgcﬁsgzogr?e-c;g?ri?] 'Snt;:aiaceE (Fig. 1) and calculate the boundary values of potential
ande, is the static dielectric constant. @41(r) from Eq. (2). Accordingly, the boundary conditions

) ) . . take the form
Potentiale, is calculated from the Poisson equation

@tot(rs) =Vs=0 (7)
’ )
Vi (r)=— POV (4)  for the source and
0¢s
wherepp(r) is the charge density of the ionized donors. In Prot(ra) =Va= Vs (8)

Eq. (4), we take ongg to be the static dielectric constant of . . - .
GaAs and neglect its changes in the heterostructure, since trf1%r the drain, wherds is the drain-source voltage. Since the

sources of the electrostatic field with potential are local- metal gate is in contact with the undoped semiconductor lay-

. > . ers, we take into account a Schottky barrier of heightat
ized within then—GaAg, Iayer's. The vol'tages applied to thethe metal-semiconductor interface. Therefore,
gate, source, and drain are included via the boundary condi-

brot(rg)=Vg— gle, 9

tions (cf. Sec. 11 D. We put the boundary conditions on total

potential..:(r) and calculate the boundary values of poten-

tial ¢4(r) from Eq.(2). This is an important step, resulting in whereVy is the gate voltage. In Eqér), (8), and(9), rs, ry,

the avoidance of computational problems, which are inhererandry are the position vectors of the points on the surfaces

in another possible approdctbased on image charges of the of the source, drain, and gate, respectively. As the electrodes

QD-confined electrons. The present approach allows us tdo not form the closed surface, which surrounds a domain of

incorporate (with controllable precisionall the quantities the solution of the Poisson equation, we enclose this domain

that determine the distribution of electrostatic field in thewith the cylindrical surface, which has the lower and upper

nanodevice. base placed on the internal surfaces of the source and drain,
In the nanodevicéd,we can distinguish two parts, sepa- respectively(cf. Fig. 1). The outer radius of this cylindrical

rated by the double tunnel barrier, consisting of the donorsurface is denoted bR, . The values of potentiap,(R;,2)

doped GaAs layers attached to the two leads. The source apdovide the boundary conditions for E@t). In the limit Ry,

drain Ohmic contacts are made of the heavily dop€slaAs  — oo, the electrostatic field between the source and drain is

layers. This means that the donor energy level is aligned witlparallel to thez axis due to the planar structure of th&aAs

the electrochemical potentialugqy=F—€Vyq , of the layers. In this case, we can determine the boundary condi-

source(drain), whereF is the common Fermi energy of the tions for Eq.(4) from the one-dimensional Poisson equation
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d? 2p(Ry,2)
—¢(Ry,2)=— ———.
dZZ(Pl( 02) €0€s

The boundary conditions for E@L0) are reduced to putting 0.15
the values ofp, in the two points lying on the internal sur-

faces of electrodes. We determine these boundary conditions

with the help of Eq(2) and the values 0,,; given by Egs. =
(7), (8), and (9) with the left-hand sides taken at points 2,
(Rp,2s), (Rp,zg), and Ry ,Zg), Wherezg, z4 andzy, are the =7 | 000
z coordinates of the source, drain, and gate, respectively. Be- 1
cause conditiori6) links the right-hand side of Eq10) with

the potential, Eq(10) has to obey the additional condition,

which is obtained as follows. The negative external gate volt- B
age leads to the ionization of donors in accordance with con-
dition (6). The ionized donors weaken the effect of the ap- 0 . |
plied voltage and—as a result—the region of the -200 0 200
nanostructure, in which the donors are ionized, has a finite z [nm]

extension. The corresponding rangg énd {y) of the ion-
ization of the donor¢measured from the dot center towards
the source and drajins implicitly defined by the two condi-
tions, which—for the source—take on the form

(10

0.05

1 I 1
-200 -180 -160

FIG. 2. Boundary conditions fojVq =10 mV shown as po-
tential energyU (R, ,2z) = —e¢4(Ry,,2) as functions of coordinate
z and gate voltage/y. The inset shows the enlargement of the
region near the drain, in whict;— —eVy,=10 meV.

#rot(Ry.45) =0 (1 used in the HF calculations for the electron system confined
and in the QD. Since the potential well id 4,(2) is narrow, i.e.,
d potentiale4(p,z) as a function ofz only slightly changes in
d_z"p“"( R, -Z)|z=4“s:0- (120 the QD region, we can neglect thei.ependence of pot.ent|al
¢4 (cf. Fig. 3. In the HF method, it is more convenient to
For the drain, in the first condition, we put use an analytical formula for the potential. For this purpose
we have fitted a polynomial, which interpolates between the
Oi0t( Ry, £dg) =Vys» (13)  numerical valuesp;(p,0). Wehave found that the six-order

olynomial of the form
while in the second conditiofEq. (12)] we substitutez poly

={4. Conditions(11), (12), and(13) mean that the com- _ 3
ponent of the electric field is fully screened and vanishes o(p)= 2 vmp2™ (14
outside the region of the ionization of the donors. The solu- m=0

tions of Eq.(10) provide the boundary conditions for Ed,.

is necessary to fit accurately the numerical solution in the

Figure 2 shows the boundary values of potential energyntire QD region, i.e., from the cylinder axis to the gate

U1(Ry,2)=—e¢1(Ry,2) as functions of gate voltag¥,

surface. In Fig. 4, we display the numerical solutions to the

and coordinate. The applied drain-source voltage leads topgisson equation, adjusted analytical expressibh, and

the asymmetry, which is visible in the inset in Fig. 2.
Namely,U;(Ry,z)—10 meV forz—z,.

We assume that the solutions of Ef0) are valid for the
finite, large enougiR,, which enables us to use the finite

computational box in the numerical calculations. The choice

of Ry, is discussed in Sec. Il E.

E. Numerical integration of the Poisson equation

Poisson Eq(4) has been solved by the finite-difference
relaxation method in the cylindrical coordinatgesZ) on the
two-dimensional mesh p(=iAp,z;=jAz), where i
=0,1,...,50 and=—100, ... 100. The region of integra-
tion has been chosen as followss@<R, andzy<z=<z,.

The numerical integration of the Poisson equation yields the

values of potentialp; on the mesh, i.e¢,(p;,z;). Figure 3
shows the calculated potential enetdy= —e¢, as a func-
tion of p andz coordinates. In order to obtain the total po-
tential energy we have to add td, the double-barrier con-
tribution Uy,(2) [cf. Eq. (2)]. This potential energy is next

the parabolic approximations of the numerical solutions fit-
ted in the region occupied by the confined electrons.

0
AN e
Y
;51{'"‘0:0:‘9{"‘;'%&3‘?&\
LRI
e

FIG. 3. Potential energy,= —e¢,, calculated from the Pois-
son equation foMg=—-2 V, V4=0, andN=0, as a function of
cylindrical coordinatep andz
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0.20 F. Hartree-Fock method

The N-electron Schidinger equation has been solved by
the unrestricted HF method. For the sake of completeness,
we briefly describe this method. The HF equations have the
form

Fsthns(r) = €ensthns(r), (15

whereF ¢ are the Fock operatorg,((r)=,(r) are the one-
electron wave functions) denotes the set of orbital quantum
numbers, and is the spin quantum numbes€ «, 3, where
a=+1/2 and B=—1/2). The Fock operators possess the

U [eV]

charge density [arb.units]

forms
N* N~
005 zcl) I 4c|) I ecl) I 8(; o0 Fa:hﬂ; (‘]”“_K”“an:l Jmg (16
P [hnm] and
FIG. 4. Potential energy,= —e¢, obtained from the numeri- NS N

cal solution(dot9 of the Poisson equation, the sixth-order polyno-

mials (solid curves, fitted to all the numerical solutions, and the Fg=h+ > (Inpg—Knp) + > Jnas (17)
parabolic fits(dashed curves adjusted to the numerical solutions n=1 m=1

lying below the shifted Fermi enerdy,, as functions op andVy  whereh is the one-electron Hamiltonian of noninteracting
for Vy4s=0. The QD confinedN=1, 7, and 12 electrons fo/;=  electrons, and\™ and N~ denote the numbers of electrons
-19V, —15V, and -1 V, respectively. Thin solid curves with spin +#/2 and—#/2, respectively. The Coulomki o)

show the charge densitjn arbitrary unit$ associated wittN elec-  and exchangeK,,J operators are defined by the formulas
trons confined in the QD. Solid horizontal line is drawn at energy

Fo, i.e., the Fermi energy of the leads decreased by the space- 3
quantized ground-state energy of the one-electron motion irz the Ims(i) ¥ns(ri) = f dor g dr; )477_8 ot Umd(1)) [ns(Ti)
direction. " (18)

2

Figure 5 shows the dependence of coefficienf@ndv ; and

of polynomial(14) on radiusR,, at which we put the bound- Kmd 1) ns(ri)

ary conditions when solving the Poisson equatioh Sec.

[ID). In the intervalR,>300 nm, these coefficients are al- :U d3r g (r ) o }lﬁ (),
most independent dR,, which allows us to determine the MV Amregenry m

actual value ofRy. In the present calculations, we have (19)
taken R,=350 nm. We have checked that taking,

>350 nm does not change the coefficients in Etd)  Wherer;;= Iri—r;| is the interelectron distance. The interac-
within the accuracy of four decimal digits. tion between the electrons confined in the QD is screened by

a high-frequency dielectric constaat, .?> Contrary to the
electrostatic fieldcf. Eqg. (3)] that mainly acts outside the

e2

AT T T T2 QD, the electron-electron interaction is not screened by LO
phonong??
I In the effective-mass approximation
—10 Ng 52
z L z h=— ZmeV2+ Uexd(r), (20)
” s v:, where the potential energy of the electron in the external
- - field is taken to bdcf. Eq. (1)]
0 . I . I 6 Uext(r):Uconf(r):Udb(z)_e";’(P)r (21)
200 800 R [nm] 400 and potentialp is defined by Eq(14). The HF equations
b

have been solved by variational means with one-electron

FIG. 5. Coefficientss, (solid curve, left scaleandv, (dashed ~Wave functions expanded in the Gaussian basis,

curve, right scaleof adjusted polynomidlEq. (14)] as functions of
outer radiusk, of surface3,, on which we put the boundary con- Pnae(r)= 2 Cpqrg (X,Y,2), (22)
ditions for the Poisson equation. pd
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input parameters of the iterative procedure, the distribution of the confined
charge carriers is taken on to be that of the point chardé of

electrons, i.e.p,=—Neldmegegr. The Poisson equation is

Qe ON Z solved for the electrostatic potential in the entire nanodevice,
pr=0, @.=—Ne/4nege s which allows us to determine the distribution of the ionized
AR donors in then-GaAs layers. Next, the calculated confine-
| 0;=Q,,; -9, 0n T |<— ment potential is used as the external potential in the HF
¥ equations. The solutions of the HF equations enable us to
|(p, from Poisson equation|<— calculate theN-electron energ¥y and the confined charge-
¥ carrier distribution. The last quantity is reintroduced into the

Poisson equation. The iterations run until a convergence of
Ey is reached. The convergence of the present procedure is
very fast, in particular, the outer loop has to be executed two
or three times only.

| calculate U,

no
[change p,, according to Eq. (6}——

n—»n+1
i—»i+1

H. Conditions of the single-electron tunneling

The transport-spectroscopy measurenieats based on

sjngle—electrop tunneling via the nanostructure. The condi-
9 tions of the single-electron tunnelifftf® are determined by

the electrochemical potentials of the sourge))(and drain

T no (mq) and the chemical potential of the electrons confined in
Ev =Ey the QD, which is defined as
yes Mn+1=Ens1—En. (24)
@ A single electron can tunnel from the source to the drain

through the QD that contairs bound electrons, #f+2°
FIG. 6. Block diagram of the self-consistent Poisson-Hartree-
Fock procedure. A detailed description is given in the text. M= MUN+1= Mg - (25

At the reverse bias, i.eV4s<0, the electron can tunnel from
the drain to source. Then, in conditid25), the signs of
— WPy _ 2,02\ o2 inequalities have to be changed. During the single-electron
Opar(X,y,2) =XFyex —an (X +y) = 7], (29) tunneling process the number of excess electrons localized in

cPd", a,, andp are the variational parameters, and the sumshe QD fluctuates as followsd —N+1—N—- - -. If condi-

run overp,q=0,1, ...,p+q<4, andr=1,2,3. tions (25) are not fulfilled, the flow of current is blocked, i.e.,
we deal with the quantum Coulomb blockadeDue to the
equality signs in conditiofi25), the single-electron tunneling
can occur even at zero drain-source voltage. Then,

We use the solutions of the HF equations to calculate total
energy Ey of the N-electron system confined in the QD. Hs= MUN+17 Mg - (26)
EnergyEy depend_s on thg proflle of the electro.sta_tlc POteN-rpis condition allows us to determine the positions of current
tial in the nanodevice, which is affected by the distribution of _

- . peaks measured fdrfys=0.

the ionized donors im-GaAs layers. The systems of the
electrons confined in the QD and the ionized donors in the
n-GaAs layers are coupled by the Coulomb interaction. Be-
cause of the mutual dependence of the density of the con- In the present paper, we have used the nominal viloés
fined electrons and the distribution of the ionized dojofs  the layer thicknesses and donor concentrations in the nano-
condition (6)], the Poisson-Schdinger problem for the en- structure(cf. Fig. 1). Moreover, we have taken on the elec-
tire nanodevice has to be solved self-consistently. For thisron effective mass of fhGa, osAs to be® 0.0643 of the
purpose we have applied the iterative procedure depicted ielectron rest mass and neglected the small jump of the elec-
the block diagraniFig. 6). In Fig. 6, the two iteration loops tron effective mass at the InGaAs/AlGaAs interface, since
are displayed. In the inner looflabeledn), we calculate the electron bound-state wave function very weakly pen-
charge densityop of the ionized donors and electrostatic etrates into the barrier region. We neglect the changes of
potential ¢, for a given distribution of the confined charge dielectric constants at the interfaces and take 13.2 appro-
carriers. The inner loop is terminated if the self-consistencypriate for GaAs(Ref. 27 and e,.=11 for In oGa, gsAS. 2
of the confinement-potential enerfigq. (1)] is reached. The The height of the Schottky barrier at the GaAs/metal inter-
outer loop (labeledi) assures the self-consistency of the face ¢ is taken to be 0.65 e¥? The shape of the double-
charge distribution of the electrons confined in the QD andbarrier potential energy 4,(2) in the GaAs/AlGaAs/InGaAs
the electrostatic potential in the nanodevice. In the first stefneterostructure is given by

where

G. Self-consistent procedure

|. Parameters of the model nanostructure
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0, for the GaAs spacers, 0 L I R S R B R
Ugn(z)=9 Up, forthe Al ,/Ga,76As barriers,

Uy, forthe In oGa osAS quantum dot.
(27)

In the calculations, we have takéh,=240 meV(Ref. 27
and U,=—59 meV, estimated from the gap differenite.
We have checked that the changelyf within physically
acceptable limits does not change the relative values of the
calculated chemical potentials, which—according to Eq.
(26)—determine the positions of current peaks. .4
Since the cylindrical pillar has been obtained in the etch- R
ing process? the inner radiu of the gate cannot be accu- [P AT AT NI NI R R
rately measured. Before the etching protg#se nanostruc- 0 2 4 6 g8 10 12
ture was covered with the circular drain of the radRg number of current peak
=250 nm. Inner gate radiuR has to be smaller than the
drain radius, i.e.R<Ry, which accounts for an undercut in
the cylindrical pilla’® In the present calculations, we have
adjusted the value @R in order to reproduce the exact posi- angles display the results obtained f&®=220.0 nm, 223.4 nm,
tions of the current peaks meastites a function of the gate  and 226.0 nm, respectively. The square Kor 8 shows the result
voltage at the small drain-source voltage. For this purposgpained under the assumption of tunneling via the first-excited
we proceed as follows: according to conditi@6) of the  gtate. Thin solid curves serve as guides for the eye. On the left
single-electron tunneling af4s=0, we calculate chemical (right) scale, the zero is at the conduction-band minimum of the

potentialsuy for N=1,...,12 and for thgate-voltage val- GaAs spacefthe common Fermi energy of the source and drain
uesVy(N) that correspond to the measured current peaks at

the small bias. ThereforeN simultaneously denotes f[he Sub- conduction-band bottom of the GaAs spacer on the left scale
sequent number of the current peak. If the gate radius has the, 4 is shifted to the Fermi level of the leads on the right

correct value, calculated chemical potentialg, ; are equal  ¢-4je.

to the common Fermi energy of the source and drain, i.e., the £ig re 7 also illustrates how sensitive the present results
chemical potential is independent Bf For the incorrectly 46 o the choice of the inner radius of the gate. The small

chosen value oR, condition(26) is not fulfilled. The depen- change oR leads to a noticeable upward or downward bend-
dence of the calculated chemical potentialMis shown in ing of the un[V,(N)] curves
9 .

Fig. 7 for R=220.0 nm(crosses 223.4 nm(circles, and In Fig. 7, the chemical potential faN=8 exhibits the

226.0 nm(triangles). In Fig: 7, the cirqles can be aPmei' largest deviation from the Fermi energy. However, in this
mately aligned on the horizontal straight line. In this caseyase the chemical potential calculated for the lowest-energy
the chemical potential of the QD-confined electrons is indegyiteq state of the eight-electron system is exactly equal to
pendent ofN, which allows us to determine the inner gate ho Fermi energy(cf. the full square aN=8 in Fig. 7).
radius. In the following, we tak&=223.4 nm. Therefore, we tentatively ascribe the eighth current peak to

In Fig. 7, the left energy scale corresponds to the resulty,q 1 nneling via the first-excited state. A more detailed dis-
obtained with the potential-well depth,, [Eq. (27)] taken as . ,ssion of this effect is given in Sec. IV.
the band-gap differenc®, which corresponds to 100%

conduction-band offset. Under this assumption, the mean

value of the calculated chemical potentials is placed 9.5 meV . RESULTS
below the conduction-band minimum of the GaAs spacer.
This value determines the relative position of the Fermi
level. However, the Fermi level should be located at the do- The calculated profile of the total confinement-potential
nor energy level, i.e., 5.8 meV below the GaAs conduction-energy(with the double-barrier potential includets shown

band bottom. Therefore, potential-well degth), should be in Fig. 8 as a function of cylindrical coordinatesand z
raised by the difference of the above values, which yieldsigure 8 provides an illustration of the potential-energy
U,=—-55.3 meV. This value corresponds to 94% variation in the central part of the nanodevice.
conduction-band offset, which is larger than the published Let us turn back to Fig. 4, which shows the solutions of
values 46%—83% for the InAs/GaAs quantum wéli§he  the Poisson equation as well as the charge density associated
larger conduction-band offset for the gated QD can resultith N electrons confined in the QD. Numbisrof the con-

from the presence of the leads in the nanodevice. We notfined electrons increases with the increasing gate voltage.
that this change of the confinement-potential-well depth doeFhe confined electrons are localized in the central region of
not change the relative values of the chemical potentials, i.ethe QD and very weakly penetrate into the region, in which
the addition energies. In Fig. 7, the zero is put at thethe potential energy exceeds the energies of the occupied

N

chemical potential [meV]

FIG. 7. Chemical potential calculated with the gate-voltage val-
ues V¢(N), which correspond to the subsequent current pedks
measured by Taruchet al® The symbolg(crosses, circles, and tri-

A. Confinement potential
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0.04 — ' —

0.02

0.00

potential energy [eV]

-0.02

FIG. 8. Confinement-potential enertyy. s [EqQ. (1)] as a func-
tion of cylindrical coordinatep andz in the central region of the
QD.

one-electron statef. thin solid curves in Fig. ¥ For Vg 0 40 80
=0, i.e.,us=uq=F, the one-electron energig&q. (15)] do p[lnm]
not exceed the Fermi energy of the source and drain, i.e., . ] .
e,~<F. According to Fig. 4, the movement of the QD- FIG. 9. _Potentlal energy; of the Iatergl confinemengsolid
confined electrons is limited to this region of space, in whichtUv® and its two components: the potential energy of the empty
the potential energy does not exceed the Fermi energy. F&f> (dashed curveand the potential energy resulting from the re-
the noninteracting electrons the one-electron Sdinger sponse of the nanodevice on the presend f.2 electrons in the

. . . . - QD (dotted curve as functions of radial cylindrical coordinate
equation with Hamlltonla}I(IZO) and potentlal_energ@l) €an  The results are displayed fof,= —1 V. Shifted Fermi energ¥,
be separated into two eigenequations, which describe the in: depicted by the thin solid Igine
plane and vertical motion. Thus, the one-electron ground- '
state energy, is a sum of the lowest eigenvalues ande,  the nonparabolicity ofJ,(p) is also visible in Fig. 4. For a
of both the eigenproblems, i.ego=€, +€,. The one- small number of the QD-confined electrons the nonparabolic
electron wave function is localized within the region ap- corrections are noticeable beyond the region occupied by the
proximately limited by the following inequalitieddJ 4,(2) electrons(cf. the results foVy=—1.9 V in Fig. 4. The
<g¢, in the vertical direction andJ,(p)=<e, in the plane nonparabolic corrections start to play a role in a description
within the InGaAs layer. This means that—on tde vs p of QD-confined electrorid if the number of electrons ex-
plot (Fig. 4—the region in which the electrons are localized ceeds~12. This property, obtained by us from the self-
can be bounded by the inequality,(p)<F,, whereF, consistent solution of the Poisson equation, is in a full agree-
=F—¢, is the Fermi energy decreased by the ground-statenent with the conclusiod$ based on experiment.
energy of the space-quantized motion in thdirection. We We have studied the physical origin of the lateral confine-
have calculated energy,, which is independent of the gate ment potential in more detail. Figure 9 displays the results
voltage and donor concentration, with the variational wavefor Vy=—1 V, which correspond tt =12 electrons bound
function being the single-dependent Gaussian. This yields in the QD. Potentialp; can be decomposed into the sum of
the estimate o&,=28 meV above the bottom of the InGaAs the following two components(i) the potential created by
potential well, i.e., 27.3 meV below the GaAs conduction-the leads foiN=0 and(ii) the potential of the response of
band minimum. According to the discussion given in Secthe nanodevice on the presenceMfelectrons in the QD.
IIl, the Fermi energy lies 5.8 meV below the GaAs Componentii) takes into account the screening of the elec-
conduction-band minimum. The difference of the last twotrostatic field of the QD-confined electrons by the leads. Fig-
values(21.5 meV provides the estimate &, which can be ure 9 shows that the approximate parabolicity of the lateral
interpreted as the maximum value of potential enéigyp), potential energy of the electron is a result of the summation
above which the charge density of the confined electronsf the two clearly nonparabolic contributions. Therefore, the

vanishedcf. Fig. 4). approximate parabolicity of the lateral confinement potential
In the region of the localization of electrons, total poten-appears to be a nontrivial and unexpected property.
tial energyU,,; [Eq. (5)] also lies belowF,. In this region of The effect of the charge confined in the QD on the poten-

the QD, lateral confinement-potential energyi(p) is an tial energy is shown in Fig. 10. When varying the gate volt-
approximately parabolic function @f (Fig. 4). Nevertheless, age we change the quantum capacity of the ®Dthe gate
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FIG. 10. Potential energy,= —e¢, as a function of gate volt-
ageVy, radial cylindrical coordinate, and numbeN of electrons
confined in the QD. Thick solid line corresponds to shifted Fermi
energyFg.

conversion factor [e]

voltage increases, taking on the smaller absolute vakigs

10), the QD traps the subsequent electrons, which in turn
ionize more donors im-GaAs layers. This leads to the step-  -0.10 | '
wise behavior of potential enerdy; (Fig. 10. Figure 10 29 Jate voltage [v]
shows how strongly the electrons confined in the QD modify

the confinement potential. This modification appears to be FIG. 11. Chemical potentigky, calculated forV4s=0 (upper

essential in the operation of the nanodevice. pane), and conversion factosy, defined by Eq(28), plotted as
functions of the gate voltage and numbkrof the electrons con-

fined in the QD. The single-electron tunneling takes placgf
=F=0. The measured positions of current peaks, taken from Ref.
The upper panel of Fig. 11 displays the chemical potentiaB, are shown by thin vertical lines.

calculated forVqs=0. The zero on the energy scale COITe- able to perform a direct comparison between the calculated

hemical potentials and measured gate voltages, which cor-
T . . respond to the current peaks. The calculated values of the
through the nanodevice if the chemical potential of theqqnyersion factor show an overall agreement with the experi-
N-electron system confined in the QD is aligned with thementally determined values of this quanfi§?! In particu-

source and drain electrochemical potentials. The crossing,. ihe absolute values ofy, decrease with increasirlg.2.

points of uy with the abscissa very well agree with the ex- 5 yever, we note that the experimental values of the con-
perimentally measurégpositions of current peaks, shown by \ersion factor have been estimated from the geometric sizes

thin vertical lines on Fig. 11. The unequal spacings between e coulomb diamondgaken at the nonzero source-drain
the subsequent peaks result from the shell filling of the am'voltage and under the assumption that half of the applied
ficial atoms®* In particular, in Fig. 11, the distinctly larger drain-source voltage is effective at the QD position
separations between the second and third, and the sixth and the results for the nonzero drain-source voItagé are re-
seventh vertical lines correspond to the filling of the first a”dported in Fig. 12. The experimental points in the shaded

the second electronic shell, respectively, while the slightly, o4 correspond to the nonzero differential conductince.
larger separations between the fourth and fifth, and the ninthpe 5ojig curves show the calculated boundaries between the
and tenth vertical lines correspond to the half filled She"S’regimes of zero and nonzero conductance. The curves with
i.e., Hund's rule. h itive and n ive sl i n _ n
In the lower p.anel of Fig. 11, we report the results of thet sin:S,id?is?)ecet?vaetly.e/-\sllciEZ ggligi%?v&%;veﬂbseaendob-
present calculations for the gate-voltage-to-energy Conve'{';\ined for tunneling via the corresponding ground state. The
sion factor, which is defined as follows: dashed curves display the results obtained under the assump-
tion of tunneling via the first-excited state of the eight-
an(Vy) = ‘9'“_N (28) electron system. The calculated boundaries of the Coulomb
9 9V, blockade regions very well agree with the measured posi-
tions, sizes, and shapes of the 12 Coulomb diamonds.

-1.0

B. Quantum Coulomb oscillations and Coulomb diamonds

According to condition(26), a single electron can tunnel

Vys=0

In Fig. 11, we have plotted vs the gate voltage only for
the values ofV, close to the current peak positions. The
calculated conversion factor allows us to transform the The operation of the nanodevids strongly dependent on
chemical potential into the gate voltage. Therefore, we arehe charge distribution of the ionized donors. This quantity is

C. Induced-charge density
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In both cases, there are no electrons confined in the QD and
V4s=0; therefore, the space charge is induced by the gate
voltage only. The stepwise increase of the induced-charge
density corresponds to the stepwise increasing concentration
of donors in the subsequemGaAs layers. The space, occu-
pied by the ionized donors, extends if the gate voltage is
lowered. The effect of the charge confined in the QD is
shown in Fig. 18&). The QD-confined electrons additionally
induce the space charge in the central part of the nanodevice.
In Figs. 13a), 13(b), and 13c), the induced space-charge
distribution is almost symmetric with respect to the inversion
. in thez=0 plane. The small difference in the barrier widths
I | | causes a slight asymmetry. The pronounced asymmetry of
10 5 0 5 10 the induced-charge distribution appears under the applied
drain-source vo“age [mV] bias. This effect is illustrated in Flg m for VdS
=50 mV. The real nanodeviteonsists of the three-GaAs
FIG. 12. Stability diagram with Coulomb diamonds. Solid layers. The present numerical results show that the donors
curves show the calculated boundaries of the single-electron tunnebecome ionized in two layers only, i.e., only the tw@GaAs
ing [cf. condition (25)] via the N-electron ground states. Dashed |ayers adjacent to the double-barrier heterostructure effec-
curve corresponds to the tunneling of the eighth electron via thejvely screen the electric field in the nanostructure. This con-

first-excited state. Dotshaded areashow the experimental data.  cjusion is valid for the nanodevice parameters quoted in Fig.
In the white diamond-shaped regions, the number of the QD+

confined electrons is fixed and equalNo

gate voltage [V]

Having at our disposal the potential profile determined in
the entire nanodevice, we can find the surface charge induced
hardly accessible in experiment; however, the present conmat the gate electrode. For this aim, we have solved the in-
putational method provides a useful tool for determining it.verted Poisson equation, i.e., Ed), in which potentiakp; is
Figures 18a)—13(d) depict the results of the present calcula- known and the charge density is sought at the gate surface
tions. Figures 1@ and 13b) show the induced space- r=r,. The calculated surface density of the charge induced
charge density fovg=—1 V andVy=—2 V, respectively. at the gate is depicted in Fig. 14. The negative values of the

200 : . : 200 . :
(a) (c)

1OOL ,‘ 100L ‘

z [nm]
z [nm]

FIG. 13. lonized-donor charge
density induced im-GaAs layers

-100 -100 shown in the cross section of the
' “ ' -‘ cylindrical nanodevice as a func-

tion of cylindrical coordinatesp

-200 1b0 6 160 -200 160 6 160 and z The white, grey, and dark
grey regions correspond to charge
p [nm] p[nm] density 0, =0, 1x10", and 1.4
X107 [elcm®], respectively.
200 i ' ' 200 Shown are the results fde) V4
(b) (d) =—1 V, VdS:O, NZO, (b) Vg

=—-2V, V4=0, N=0, (c) V
100 100-‘ “ — 1 V. V4= 0, N=12, and(d)
Vg=—1V, V4=50 mV, N
=0. N is the number of electrons
confined in the QD region, which

is located close ta=p=0.

z [nm]
z [nm]

-100 100 [ -

-200 00 0 100 -200 100 0 100

p [nm] p[nm]
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(Is7)(1s)(Ip+ 1) (1p+ 1) (1p-T)(1p-1)(1d, T)(1d 1),
i.e., four spin orbitals with spin up and four spin orbitals with
spin down. The chemical potentials calculated with this first-
excited-state energy exactly agree with the Fermi energy of
the source and drai(fFig. 7) and lead to a good agreement
between the calculated and measured boundaries of the Cou-
By lomb diamonds(cf. dashed curves in Fig. 12This would
lead to a suggestion that the eighth electron may tunnel via
the first-excited state. However, since no selection rules sup-
port this suggestion, this problem requires further study.

The chemical potentials can also be changed by the an-
isotropy of the nanostructuféwhich can essentially change
the rotational symmetry of the confinement potentfah the
perpendicular gated QD's, studied by Austiegal,>* the
confinement potential possesses an ellipsoidal symmetry.
However, in the cylindrical QD’S, the anisotropy can be
treated as a small perturbation, which slightly shifts the
chemical potentials for the few-electron systéins.

The confinement potential depends on the number of elec-
FIG. 14. Surface charge densiiy units e/n2) of the charge, trons confined in the QD. This leads to the problem of the

induced at the surface of the gate, plotted as a function of cylindri-r"?lte of relaxation of _the i_onized-donor diStribl_Jtion duri_ng
cal coordinateg andz. single-electron tunneling via the QD. The following question

arises: how fast does the ionization of donors follow the
induced surface charge assure the charge neutrality of trféange of the number of QD-confined electrons? In order to
nanostructure. The characteristic peaks account for the larggswer this question we consider two extreme mechanisms

<
&

suriace charge dernsity

electric-field gradient at the gate edges. of the rapid and slow relaxation during tunneling of the (
+1)th electron via the nanodevice. According to the rapid-
IV. DISCUSSION relaxation mechanism, the donors immediately follow the

presence of each additional electron in the system. Therefore,

In the present paper, the ScHinger equation has been the electronic component of potentf&q. (3)] should origi-
solved by the HF method, in which the electron-electron cornate from the actual number of the QD-confined electrons. In
relation is neglected. In our previous papewe have quan- this case, the energid®,.,; and Ey, needed to determine
titatively determined the effect of correlation for the three-chemical potentialEq. (24)], should be calculated with the
dimensional two-electron system in a parabolic isotropic andise of the different confinement potentials. We have per-
anisotropic confinement potential. Our stdithhas shown formed the calculations according to this mechanism and
that the HF and exact results very well agree with each othefiound that the results do not reproduce the tunneling-current
for the QD’s of small and intermediate size, which corre-peaks correctly.
sponds to the range of the confinement potential up to The slow-relaxation mechanism corresponds to the reso-
~100 nm. Taking on the model parabolic anisotropicnant tunneling. Then, during the flow of the single electron
confinement with the parameters compatible with the ver- through the QD, the response of the donor system on the
tical gated QD’ we have estimated the inaccuracy of the HFchange of the number of excess electrons is extremely slow.
ground-state energy to bel meV for the two-electron sys- Therefore, both the energi&s,,; andEy should be calcu-
tem. It is known that—in the quantum-mechanical calcula-Hated with the same confinement potential. In the present
tions for natural atoms—the HF method works better for thepaper, we provide the results obtained under assumption of
atoms with the larger number of electrons. The inaccuracglow relaxation. They are in a very good agreement with
caused by the neglected electron-electron correlation can kexperiment. It is interesting that we obtain agreement with
responsible for the small deviations of the calculated chemiexperiment if we calculat&y andE, ., taking the confine-
cal potentials from the Fermi energgf. Fig. 7). ment potential forlN as well asN+ 1 electrons confined in

The chemical potential calculated for the ground statehe QD. In both cases, the chemical potentials are approxi-
of the eight-electron system exhibits the largest deviatiormately placed on two horizontal straight lin@ike the one
from the Fermi energy. In the eight-electron ground stateshown in Fig. 7, which are slightly shiftedby 2 me\) with
the electrons occupy the following spin orbitals: respect to each other. These results strongly support the
(AsT)(As))(Ap-DLp, D@Ap-_T(Ap_1)(2d, 7)(2d_T1), slow-relaxation mechanism with the average number of con-
i.e., five spin orbitals with spin up and three spin orbitalsfined electrons betweeN and N+ 1. Additionally, the lack
with spin down.(The orbitals with the azimuthal quantum of hysteresis of the measured current-gate-voltage
number =0, 1, and 2 are denoted by, p, and d, characteristics* provides experimental supp®ttfor the
respectively. The energy of this ground state is very close slow-relaxation mechanism.
to the energy of the first-excited state, in which the In the gated nanodevicescreening of the electrostatic
following spin orbitals are occupied by the electrons:potential is very importarfc The present approach takes the
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screening into account via the proper boundary conditions oteken on reliable values of parameters characterizing the
lead surfaces and the incorporation of the ionization of doAlGaAs/InGaAs/AlGaAs double-barrier heterostructure and
nors. An alternativdand equivalentmethod was proposed checked that the changes of these parameters within physi-
by Bruce and Maksyri® who considered the gated nanode- cally acceptable limits have a negligible effect on the condi-
vice, but with different structur® The author® introduced  tions of the single-electron tunneling via the nanodevice.
the image charges in order to take the screening into accoufnly the inner radius of the gate cannot be measured with
and obtained the nonparabolicity of the confinement potensufficient precision. Therefore, in the present paper, we had
tial as a result of screening. Contrary to the present paper, tH8 tréat this radius as the adjustable parameter. Figure 7
author® considered the nanodevi€en which all the do- Shows how sensitive the conditions are of the single-electron
nors were ionized. The present approach seems to be simpl&nneling on the small changes of the gate radius.
since we obtain the confinement potential directly from the
Poisson equation without a need of the additional calculation
of the Green function like in Ref. 23.

The present results show that—in the three-electrode We have elaborated the self-consistent method of the so-
nanodevicg—it is not possible to account for the screening lution of the Poisson-Schdinger problem for the three-
of the electron interactions within the dot by either a singleelectrode QD-based nanodevice. In the present paper, we
effective dielectric constant or a single screening functfon. have applied this approach to the vertical gated quantum dot
This screening results from the charge induced by the QDef the cylindrical symmetry. The present method has enabled
confined electrons. The induced charge is located too faus to determine the three-dimensional profile of the confine-
from the QD region, i.e., in the-GaAs layers and the remote ment potential, calculated from first principles of electrostat-
gate electrodécf. Figs. 13 and 14 in order to be effective in ics. We have taken into account the number of electrons con-
the direct screening of the electron-electron interactionsined in the QD, the voltages applied to the leads, and the
within the QD. The problem of screening in the gated QD’sdistribution of the ionized donors. The calculated confine-
is much more complicated than that of screening via an efment potential exhibits a complex dependence on these
fective medium. Nevertheless, this complex problem haguantities. We have shown that the evaluation of the realistic
been solved in the present paper. The calculated responsenfinement potential is of crucial importance for an accu-
potential (cf. dotted curve in Fig. Pshows the effect of rate quantitative description of the electronic properties of
screening of the interactions between the electrons within théhe nanodevice. We have discussed the problem of nonpara-
QD by the leads. We have shown that—in the vertical gatedbolicity of the lateral confinement potential and the problem
QD—the screening depends on external voltages applied tof screening of interelectron interactions within the QD. For
the electrodes, the distribution of ionized donors, and themallN and the energy below the Fermi level the calculated
charge confined in the QD. Therefore, its determination refateral confinement potential is approximately parabolic,
quires the self-consistent solution of the Poisson-Stihger ~ which supports the previous conjectures that the two-
problem for the entire nanodevice, which was done in thelimensional harmonic-oscillator model qualitatively de-
present work. scribes the properties of the artificial atoms formed in the

The problem of the nonparabolicity of the lateral confine-nanostructure. Nevertheless, the incorporation of the nonpa-
ment potential has been discussed in the relation with Figs. dabolic corrections is necessary for an accurate quantitative
and 9. Here, we summarize this discussion by a statemeiiescription. The deviations from the parabolicity become im-
that the lateral confinement potential is almost parabolic beportant for largeN and the energies near and above the Fermi
low the Fermi level and exhibits the distinct nonparabolicity level. We have also shown that the approximate parabolicity
near and above the Fermi level. Due to the complex electroef the lateral confinement potential results from the summa-
statics of the nanodevice, the approximate parabolicity of théion of the two clearly nonparabolic contributions. One of the
lateral confinement potential is @anpriori unexpected result. components of the confining potential includes the screening
As shown in Fig. 9, both the components of the lateral conof the electron field within the QD by the leads.
finement potential are clearly nonparabolic. We have calculated the chemical potential fbelectrons

In other theoretical papers, agreement with experimentonfined in the vertical gated QD and found that the chemi-
datg was claimed for the addition energy, e.g., Ref. 15.cal potential is a nonlinear function of the gate voltage. We
However, the addition energy, defined asun= i1 have evaluated the gate-voltage-energy conversion factor,
—un, €an be extracted from the experimental data only ifwhich enabled us to perform a direct comparison of the com-
the gate-voltage-energy conversion factor is known. Agutational results with the transport-spectroscopy data. For
shown in the lower panel of Fig. 11, the conversion factorthe very small drain-source voltage the calculated positions
strongly depends on the gate voltage and the number of eleof the single-electron current peaks on the gate-voltage scale
trons confined in the QD. These effects are neglected if theery well agree with the experimental data. In particular, we
confinement potential is fixed as in Ref. 15. have quantitatively described the shell filling and Hund's

In the present paper, good quantitative agreement withule for the artificial atoms formed in the vertical gated QD.
experiment* has been obtained with the use of nominalWe have also performed the calculations for the nonzero
valueg® of the layer thicknesses and donor concentrationsdrain-source voltage, which allowed us to determine the
The values of the effective band masses and dielectric corboundaries of the Coulomb diamonds on the stability dia-
stants have been taken from the literattff@®We have also gram. We have obtained the positions, sizes, and shapes

V. SUMMARY
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of the Coulomb diamonds in very good agreement with exviding us with the nominal values of the nanostructure pa-
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