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A two-electron system confined in two coupled semiconductor quantum dots is investigated as a candidate
for performing quantum logic operations with spin qubits. We study different processes of swapping the
electron spins by a controlled switching on and off of the exchange interaction. The resulting spin swap
corresponds to an elementary operation in quantum-information processing. We perform direct simulations of
the time evolution of the two-electron system. Our results show that, in order to obtain the full interchange of
spins, the exchange interaction should change smoothly in time. The presence of jumps and spikes in the time
characteristics of the confinement potential leads to a considerable increase of the spin-swap time. We propose
several mechanisms to modify the exchange interaction by changing the confinement potential profile and
discuss their advantages and disadvantages.
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I. INTRODUCTION

In quantum computations, one- and two-qubit logic gates
play a crucial role, since they allow us to perform an arbi-
trary quantum logic operation �1�. Recent, practical realiza-
tion of these gates has been a challenge for many physical
laboratories. Among several propositions of constructing sys-
tems performing two-qubit gates, the most promising are
these based on the mechanism of a controlled switching on
and off of the exchange interaction between spin qubits
�2–14�. Tuning the exchange interaction between electrons in
coupled quantum subsystems can lead to an interchange of
qubit states and, as a consequence, to the performance of a
designed quantum logic operation.

A physical implementation of the controlled exchange in-
teraction itself is a difficult task. Moreover, the elements of a
future quantum computer have to fulfill several conditions,
known in the form of DiVincenzo criteria �15�. One of them
is a scalability, which allows one to join the elements into a
computational machine. It is expected that semiconductor
nanodevices, in particular those consisting of semiconductor
quantum dots �QDs�, should be scalable to large enough size.
Recently, electron spin states have been regarded to be the
most promising candidates for qubits �6,8,9,16–19� due to
the long coherence time �20�. Quantum-information process-
ing can be performed via changes of the electron spin states
�8,16,17�. A spin flip can result from a precession in the
external static magnetic field �14,21� or an irradiation of the
electron system by an electromagnetic wave with frequency
adjusted to the Zeeman splitting �5,22�. The spin swap can be
caused by an exchange interaction between the two electrons
�2�.

Coherent control of two-electron spin states in coupled
QDs has been realized by Petta et al. �18�. Applying the
suitably chosen gate voltage pulses to the double QD, the
authors �18� performed a quantum-state preparation, coher-
ent manipulation, and projective readout of the two-spin qu-

bits. The coherence time is limited by hyperfine interactions
of the electron spin with nuclear spins of GaAs. Using quan-
tum control techniques, Petta et al. �18� estimated that the
coherence time for two-electron spin qubits exceeds 1 �s.
Meunier et al. �19� performed a nondestructive measurement
of two-electron spins in a single QD. This measurement al-
lowed the authors �19� to realize a repeated identification of
singlet- and triplet-electron-spin states with the same out-
come every time. Therefore, this technique is very promising
for the storage and processing of the quantum information.

A general theory of the two-electron spin manipulation in
coupled QDs was presented, e.g., �16,17,23�. In particular,
Schliemann et al. �17� considered a coupled QD system with
the tunneling matrix element approximated by a smooth
function of time, which led them to the conclusion that the
swap of electron spins can be unperturbed by a possible
double occupancy of the QD.

In the present paper, we study the swap operation of the
two-electron spins, which results from a controlled switching
on and off of the exchange interaction between the electrons
in coupled QDs. The exchange interaction is switched on and
off as a result of designed time changes of the QD confine-
ment potential. We propose different schedules of changing
the confinement potential, which are described by smooth as
well as non smooth time characteristics. We show that these
time characteristics are of crucial importance for the result-
ing spin swap; in particular, the non smooth time dependence
of the QD confinement potential can lead to a non adiabatic
spin-swap process with ill-defined spins of the electrons.

A properly tuned exchange interaction leads to a swap-
ping of electron spins �2,3,9,14,16,24�. We describe this pro-
cess for a two-electron system in coupled QDs using a model
that takes into account all three space dimensions, electron
spins, and interelectron interactions, but neglects electron
spin-nuclear spin interactions �25�. We apply the adiabatic
approximation in order to decouple the transverse and longi-
tudinal degrees of freedom and perform an integration over
the transverse spatial coordinates. This leads to the effec-
tively one-dimensional two-electron problem �26�, which can
be solved by the numerical method with an arbitrary preci-*bednarek@novell.ftj.agh.edu.pl

PHYSICAL REVIEW A 76, 032302 �2007�

1050-2947/2007/76�3�/032302�14� ©2007 The American Physical Society032302-1

http://dx.doi.org/10.1103/PhysRevA.76.032302


sion �27�. The system under study is described by the two-
particle wave function of the form of a four-component state
vector, which takes into account all possible spin configura-
tions. We consider different methods of turning on and off
the exchange interaction between the electrons and investi-
gate the resulting changes of electron spins. The present
computer simulations are based on accurate numerical solu-
tions of the time-dependent Schrödinger equation; i.e., they
allow us to trace the time evolution of the electron system in
a direct manner. Therefore, the present results fill in a gap
between quantum-information theory and experiment. We
hope that these results will serve as a guide for experimental
groups, which are involved in designing and constructing the
nanodevices with spin qubits.

The paper is organized as follows: the theoretical model is
presented in Sec. II, the numerical method is described in
Sec. III, and the results are presented in Sec. IV �for the
vertically coupled QDs� and in Sec. V �for the laterally
coupled QDs�. Section VI contains a discussion and Sec. VII
conclusions and summary.

II. THEORETICAL MODEL

The present paper is based on a model proposed by the
present authors in Ref. �28�. We extend the model of Ref.
�28� by taking explicitly into account the spin states of elec-
trons. For the sake of completeness, below we repeat the
major steps of the approach �28�. We study two electrons
localized in a double-QD nanostructure. We assume a cylin-
drical symmetry of the system with the symmetry axis
�z axis� going through the geometrical centers of the QDs.
The potential confining the electrons in the x-y plane is taken
to be sufficiently strong that the differences between the en-
ergy levels resulting from the x-y space quantization are
much larger than the electron-electron interaction energy.
This potential is usually called the lateral confinement poten-
tial. We approximate the lateral potential by the two-
dimensional harmonic oscillator potential and assume that
both electrons occupy the ground state in the x-y motion. In
other words, we assume that the lateral �transverse� electron
degrees of freedom are frozen. The above assumptions allow
us to reduce the starting three-dimensional problem to the
effectively one-dimensional problem �26� with the electron-
electron interaction being the following function of z1 and z2
coordinates of both the electrons:

Vef f�z1,z2� =
e2���

4��0�
e��z1 − z2�2 erfc����z1 − z2�� , �1�

where �0 is the vacuum electric permittivity, � is the static
electric permittivity, �=me�� / �2��, me is the electron effec-
tive conduction band mass, and ��� is the excitation energy
of the electron transverse motion. The Hamiltonian of the
system takes the form �26�

H = −
�2

2me
� �2

�z1
2 +

�2

�z2
2� + V�z1,t� + V�z2,t� + Vef f�z1,z2� ,

�2�

where V�zi , t� is the potential energy of the vertical confine-
ment of the ith electron. In the following, vertical confine-

ment energy V�z , t� will be in general taken in a form of two
potential wells separated by the potential barrier. In Eq. �2�,
we have omitted the constant 2���—i.e., the excitation en-
ergy of the transverse motion of two electrons. In the calcu-
lations, we take on the parameters which correspond to nano-
structure based on GaAs: me=0.067me0, where me0 is the
free-electron rest mass and the static electric permittivity �
=11.0.

In the two-electron system, we are dealing with four in-
dependent spin states; therefore, the total wave function of
the system can be represented by the following four-
component vector:

��z1,z2� =	
�↑↑

�↑↓

�↓↑

�↓↓

 , �3�

where �nm=�nm�z1 ,z2� are the basis wave functions with in-
dices n ,m= ↑ ,↓, which correspond to the z-spin component
eigenvalues ±� /2, respectively. The basis wave functions
�nm do not possess well-defined symmetry. However, the to-
tal wave function �3� has to be antisymmetric with respect to
simultaneous exchange of the space and spin coordinates.
This property imposes the following conditions on the basis
wave functions:

�↑↑�z1,z2� = − �↑↑�z2,z1� , �4a�

�↓↑�z1,z2� = − �↑↓�z2,z1� , �4b�

�↓↓�z1,z2� = − �↓↓�z2,z1� . �4c�

In representation �3�, the operators of the total spin are ex-
pressed by the following 4	4 matrices:


x
tot = �
x 1

1 
x
�, 
y

tot = �
y − i1

i1 
y
� , �5�


z
tot = �
z + 1 0

0 
z − 1
� ,

where 1 denotes the unit 2	2 matrix and 
x, 
y, and 
z are
the spin Pauli matrices. The corresponding expectation val-
ues are calculated as �
k

tot�= �� �
k
tot ���, where k=x ,y ,z.

The expectation values of the total spin components are ob-
tained from Sk

tot= �� /2��
k
tot�.

Due to their indistinguishability, the electrons cannot be
numerated, therefore, we can not determine which electron is
in a given spin state. However, we can distinguish the two
quantum dots, determined by the corresponding potential
wells. We shall call them the left and right QDs �potential
wells�. If both QDs are separated by the nonpenetrable po-
tential barrier, which does not allow for a tunneling of elec-
trons, then, in the ground state of the system, each electron is
localized in a single QD. Owing to this, we can determine
the spins of electrons in the left and right QDs. For this
purpose, we introduce the auxiliary wave function ��z1 ,z2�,
which will be called the reference wave function. This wave
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function is a solution of the Schrödinger equation for the two
distinguishable particles, which, with an exception of indis-
tinguishability, possess all the properties of the electrons. For
the distinguishable particles we do no perform a symmetri-
zation of the two-particle wave function. Instead the solu-
tions found for ��z1 ,z2� correspond to the configuration, in
which one electron �described by coordinate z1� is localized
in the left QD and the other �z2� is in the right QD. This state
always exists if the tunneling through the barrier is not pos-
sible. In each simulation performed, these configurations are
realized at the initial �t=0� and final �t=T� time instants. The
reference wave function will serve to a construction of the
initial state wave function and a determination of the spin
states of electrons in both the QDs. The expectation values of
spin components are calculated as follows:

Sk
j =

�

2
�
k

j� =
�

2
uT
k

ju , �6�

where j=L ,R corresponds to the electron localized in the left
�L� and right �R� QD, and

u =	
�����↑↑�
�����↑↓�
�����↓↑�
�����↓↓�


 . �7�

The spin matrix operators in Eq. �6� have the form


x
L = �0 1

1 0
�, 
y

L = i�0 − 1

1 0
�, 
z

L = �1 0

0 − 1
� ,

�8a�


x
R = �
x 0

0 
x
�, 
y

R = �
y 0

0 
y
�, 
z

R = �
z 0

0 
z
� .

�8b�

The operator of the kth component of the total spin is defined
as Sk

tot= �� /2��
k
L+
k

R�.

III. SETTING UP THE COMPUTER EXPERIMENT

We simulate the process of swapping the spins for two
electrons localized in two QDs, which are initially separated
by the potential barrier. We consider both the vertical and
lateral geometries of the QD nanostructure. In the process
studied, the spins of the electrons localized in the left or right
QD are flipped as a result of the controlled switching of the
exchange interaction between the electrons, which leads to
the spin-swap operation. We discuss two methods to control
the exchange interaction. According to the first method, the
exchange interaction is switched on �off� by lowering �rais-
ing� the potential barrier. During this process the inversion
symmetry of the double-QD confinement potential is con-
served. The second method a based on a change of the depth
of one of the potential wells, which leads to a flow of elec-
trons and their localization in the same QD. In this process,
the confinement potential becomes asymmetric with respect

to the inversion. In QD-based nanodevices, both methods
can be implemented by changing the external voltages ap-
plied to the electrodes, which are sources of the electrostatic
field forming the coupled QDs �13�, or by locating the QD
system in the electromagnetic field �7�.

Based on an analogy with Rabi oscillations in a two-level
quantum system, the process of switching on and off the
exchange interaction, which leads a the change of the initial
spin orientation to the opposite one, will be called the �
pulse. In electrostatic QDs, the � pulse can be realized by a
proper change of gate voltages. We denote the time needed to
complete the spin-swap operation by T�. We shall also deal
with processes after which the expectation value of the z th
component of the electron spin does not reach ±� /2—i.e.,
��Sz

j� � �� /2. In such processes, the change of spin orienta-
tion is not complete.

The additional purpose of the present study is the optimi-
zation of nanodevice parameters and time changes of the
confinement potential in order to make the spin-swap time
possibly short. Minimization of T� is important since this
time interval determines the duration of the elementary quan-
tum logic operation that should be much shorter than the
coherence time of spin qubits. It is required �15� that the
ratio of the gate operation time to the coherence time should
be less than 10−4 in order to complete a computation along
with several error correction runs �29� before the decoher-
ence destroys the information stored in the qubits. In GaAs,
the spin coherence time has been estimated to be longer than
1 ms �30�.

At the initial time instant, the potential barrier between
the left and right QDs is set to be nonpenetrable for the
electrons. In each simulated process, the initial two-electron
state is always prepared as the lowest-energy state, in which
the electron localized in the left �right� QD possesses the spin
z component Sz

L�t=0�= +� /2�Sz
R�t=0�=−� /2�. For the non-

penetrable barrier the singlet and triplet states are degenerate;
i.e., the initial state is a linear combination of the singlet state
and one of the triplet states �that with the total-spin z com-
ponent equal to zero�. The two-electron wave function that
satisfies these initial conditions has the form

�initial  ��z1,z2,t = 0� =	
0

��z1,z2�
− ��z2,z1�

0

 , �9�

where ��z1 ,z2� is the reference wave function defined in Sec.
II. Wave function �9� fulfills symmetry constraints �4�. After
a normalization, the wave function �9� is subjected to a tem-
poral evolution according to the time-dependent Schrödinger
equation

i�
���z1,z2,t�

�t
= H��z1,z2,t� , �10�

where H is given by Eq. �2� and the time dependence of
potentials V�zi , t� and Vef f�z1 ,z2� will be determined in the
following sections.
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The spin expectation values are calculated using Eq. �6�
as follows. First, the reference wave function ��z1 ,z2� is cal-
culated by the imaginary time step method �27�. The refer-
ence wave function is next applied to construct the total
wave function �Eq. �9�� for t=0. Wave function �9� is used as
the initial condition to perform the time simulation of
Schrödinger equation �10�. In the last step, we apply ��z1 ,z2�
to calculate u �Eq. �7�� and Sk

l �Eq. �6��.
The results of simulations are presented as a function of

duration time T of the process of switching on and off the
exchange interaction. We note that we are dealing with two
time intervals T and T�, which have a different meanings.
Time interval T determines the duration of the arbitrary pro-
cess of changing the confinement potential. Time interval T�

determines the duration of the process during which the spins
are fully swapped. At the end of each simulation, we record
the expectation values of z spin component of the electron in
the left �L� and right �R� QD. These final values of spins are
denoted by Sf

L,R, where Sf
L,R=SL,R�t=T�. Moreover, we record

the energy difference Efi=Ef −Ei between the energies of
the final �Ef� and initial �Ei� states of the system. The non-
zero value of Efi means that the process in non adiabatic.

The numerical procedure applied allows us to detect the
spins of single electrons in another manner. Namely, we can
directly observe the temporal evolution of the second ��↑↓�
and third ��↓↑� components of the total wave function �Eq.
�3��. We note that, due to the symmetry, it is sufficient to
determine only one of these components, which allows us to
speed up the computations. The full spin swap corresponds
to the interchange of these two components—i.e.,

	
0

�↑↓

�↓↑

0

↔	

0

�↓↑

�↑↓

0

 . �11�

IV. VERTICALLY COUPLED QUANTUM DOTS

Vertically coupled QDs �31� can be described by a simple
model with two rectangular potential wells separated by a
rectangular barrier �Fig. 1�. The vertical QDs, studied in
Refs. �31,32�, were fabricated on the basis of
GaAs/ �In,Ga�As/ �Al,Ga�As heterostructure. In this section,
we apply the model described in Sec. II with confinement
potential energy V�z , t� taken in the form of a double rectan-
gular potential well �Fig. 1� with potential barrier energy
VB�t�V�z=0, t� �Fig. 2�. The exchange interaction is
switched on by lowering the height of the potential barrier to
the potential-well bottom level and is switched off by raising
the potential barrier to the initial height. The time character-
istics of the process of changing the potential barrier can be
chosen in many ways. In the present paper, we have chosen
the time characteristics parametrized as step, piece wise lin-
ear, and smooth functions �Fig. 2�.

We choose such values of the nanostructure parameters
�Fig. 1� that the electron tunneling is negligibly small at the
initial and final time instants. Then, the electrons are well

separated in space and one of them is localized in the left
QD, while the second electron is localized in the right QD.
Owing to this, the spin states of both electrons can be exactly
determined in the initial as well as final time instant. We
choose the same widths of the potential wells and potential
barrier dL=dR=dB=10 nm and the potential well depth VL
=VR=−150 meV. At the initial time, we take the barrier top
energy VB�0�=0. We note that the conduction-band bottom
of the barrier material is chosen as the reference energy and
set equal to zero.
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FIG. 1. Confinement potential profile V as a function of vertical
coordinate z. The curves correspond to the barrier top energy VB �a�
VB=0, �b� VB=−50 meV, �c� VB=−100 meV, and �d�
VB=−150 meV.
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A. Time changes of the potential barrier

First, we study the effect of the step dependence of the
barrier height on time �Fig. 2�a��. In this process, the barrier
top energy is rapidly lowered from VB=0 to
VB=−150 meV—i.e., to the energy of the potential well bot-
tom. We let the system to evolve for time t=T, after which
the barrier is rapidly raised to the starting value. We have
performed a series of simulations for different operation
times T. We record the z-spin component expectation values
Si,f

L,R for the left �L� and right �R� QD at the initial �i� and
final �f� time instants.

The results, displayed in in Fig. 3�a�, show that the spin
expectation values Sf

L,R rapidly oscillate as a function of time
T and the amplitude of these oscillations does not reach � /2.
This means that sudden changes of the barrier do not lead to
a full interchange of spins at any time interval T studied. The
behavior of the energy difference Efi=Ef −Ei between the
final and initial states �Fig. 3�b�� allows us to explain this
effect. Similarly to the average electron spin, the energy dif-
ference Efi exhibits rapid oscillations as a function of pro-
cess duration time T. We interpret the results of Fig. 3�b� as
follows: during the sudden jumps of the barrier height the
electron system is excited to higher-energy states. As a con-
sequence, the energy of electrons in the final state increases;
i.e., Efi is always larger than zero and exhibits jumps.
Moreover, the electron wave function spreads out over the
two potential wells. Therefore, the switching of the interac-

tion between the electrons in a rapid manner does not lead to
the required full swap of spins.

Next, we study the two-step process, during which the
potential barrier height is a piece wise linear function of time
�Fig. 2�b��. In the first step, for 0� t�T /2, the barrier height
is lowered according to

VB�t� = VB
max − 2�VB

max − VB
min�

t

T
, �12�

where VB
max �VB

min� denotes the largest �smallest� barrier
height reached during time interval T. In the second step—
i.e., for T /2� t�T—the potential barrier is raised according
to

VB�t� = VB
min + 2�VB

max − VB
min�� t

T
−

1

2
� . �13�

The results �Fig. 4� show that spin expectation values Sf
L,R

are oscillating functions of time with period T. Each ex-
tremal value Sf

R= ±� /2 of the z-spin component corresponds
to the state, in which each electron possesses a spin orienta-
tion opposite to that in the initial state. Therefore, there exists
a series of well-defined time intervals T=Tn

�, for which the
z-spin component of each electron changes its sign. This
means that both electrons interchange their spins: i.e., we
deal with the spin swap operation. The subsequent extrema
in Fig. 4�a� correspond to the � pulses with duration time
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FIG. 3. �a� Expectation values Sf
L,R of the z-spin component

recorded at the end of the process of switching on and off the
exchange interaction as a function of process duration time T for
step like changes of the barrier. The solid �dashed� curve shows the
results for an electron in the right �left� QD. �b� Energy difference
Efi between the final- and initial-state energies as a function of
process duration time T.
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detected at the end of the process of switching on and off the ex-
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time T of the process. The inset zooms in on part of this figure.
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given by Tn
�=nT1

�+const, where n=1,2 , . . . numerates the
subsequent extrema. If we increase the process duration time
T, we simultaneously increase the time interval during which
both electrons are localized in the same region of space. As a
consequence, for the sufficiently long time T spin swapping
can occur many times. If the process lasted for infinitely long
time, the spin interchange would occur infinitely many times.
This scenario would be realized for an isolated system �non
interacting with an environment�. In this case, spin expecta-
tion values Sf

L,R would oscillate with amplitude � /2 infinitely
many times; i.e., there exists an infinite series of time inter-
vals Tn

�, for which the spins are fully interchanged. However,
in real systems, we deal with the decay of quantum states,
which leads to the energy dissipation and the decoherence,
which randomly changes the relative phase of spin qubits.
These processes will lead to a decreasing amplitude of Sf

L,R

for increasing time interval T. Therefore, in order to perform
a successful quantum logic operation the spin-swapping pro-
cess should last for a possibly short time. However, there
exists the lower limit on time interval T, during which the
potential barrier is changed. This limit results from the re-
quirement of adiabaticity of the process: the barrier has to be
changed sufficiently slowly—i.e., in an adiabatic manner—in
order to leave the system in the ground state. If the time
interval T is too short, the system can undergo transitions to
excited states, which leads to increase of energy and nona-
diabaticity of the process.

The nonadiabaticity of the spin interchange process can
be also observed in the behavior of Sf

L,R�T� �Fig. 4�a��. A
closer look at the present computational results has led us to
the observation that the first maximum is slightly lower than
the other maxima. For the first maximum the exact spin ex-
pectation value reaches � /2 with accuracy 98.7%. Similarly,
due to spin conservation, for the first minimum, Sf

L reaches
the value −� /2 with the same accuracy. The extrema, which
correspond to the second � pulse, reach ±� /2 with accuracy
99.4%. However, the next extrema of Sf

L,R are equal to ±� /2
with a high precision. Therefore, we deal with several pro-
cesses of incomplete interchange of spins before Sf

L,R start to
switch between values ±� /2. The lowering of the amplitude
of Sf

L,R is more pronounced if the process of changing the
potential barrier is more rapid. The present results show that
several processes of incomplete spin swapping can occur be-
fore we achieve a full interchange of spins, which leads to an
elongation of the spin-exchange time. We note that this effect
is not expected within the model, based on the effective
Heisenberg Hamiltonian. In this model, the exchange inter-
action between the electrons is described by the Hamiltonian
H�t�=J�t�S1 ·S2,where J�t� is the exchange interaction en-
ergy and the spin operators S j �j=1,2� are expressed in
terms of the corresponding Pauli matrices. Our estimates
show that in real quantum systems the spin interchange time
can be longer than that resulting from the Heisenberg model,
which does not take into account details of the physical
implementation of switching on and off the exchange inter-
action.

Figure 4�b� displays the dependence of the energy sepa-
ration Efi on duration time T of the process. In the inset, we
zoom in on this dependence for the narrower time interval,

which allows us to observe the oscillations of Efi. The am-
plitude of these oscillations decreases with increasing T.
Moreover, Efi asymptotically approaches zero for large T.
In general, the positions of the local minima of Efi do not
coincide with Tn

� �cf. Fig. 4�a��. For the chosen nanostructure
parameters, this coincidence appears for the third � pulse at
T=8.2 ps. For piecewise linear changes of the potential bar-
rier we deal with a sudden change of the confinement poten-
tial at T /2, which leads to the nonadiabaticity of this method
of spin interchange.

Based on the above results, we expect that better results
should be obtained if the potential barrier changes smoothly
in time. Therefore, we have modeled the time dependence of
the potential barrier by the following function �Fig. 2�c��:

VB�t� =
1

2
�VB

min − VB
max��1 − cos �t� + VB

max, �14�

where �=2� /T. The results of simulations �Fig. 5�a�� show
that the amplitude of Sf

L,R�T� approaches � /2 much faster
than for linear changes of the potential barrier. Already the
second maximum reaches � /2 with accuracy 99.99%. More-
over, the results for the energy difference Efi �Fig. 5�b��
show that we can regard this process to be adiabatic for T
�2 ps. The amplitude of the periodic changes of Sf

L,R re-
mains constant �and equal to � /2� for T�2 ps. The very fine
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FIG. 5. �a� Expectation values Sf
L,R of the z-spin component

detected at the end of the process of switching on and off the ex-
change interaction as a function of process duration time T for
smooth changes of the potential barrier. The solid �dashed� curve
shows the results for the electron in the right �left� QD. �b� Energy
difference Efi between the final and initial states as a function of
duration time T of the process. The inset zooms in on part of this
figure.
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jumps of Efi near zero, which are visible in the inset of Fig.
5�b�, result from the small numerical errors.

The spin of the single electron localized in the left �right�
QD can be determined from Eq. �6� only if the probability of
finding both electrons in the same QD is zero. This state is
always prepared at the initial time instant and usually
reached at the final instant in the process of potential barrier
changes. At intermediate time instants, the electrons are not
spatially separated; therefore, quantities SL,RSz

L,R, calcu-
lated from Eq. �6�, are not equal to the eigenvalues of the
z-spin component of the electron in the left and right QDs.
Nevertheless, for arbitrary time t, SL,R can serve as spin-
control indices.

In Fig. 6 we present the time dependence of the spin-
control indices and energy of the two-electron system, which
correspond to the pulses with duration times T1

� and T2
� for

piecewise linear and smooth changes of the potential barrier.
The energy is measured relative to the ground-state energy
E0 of two electrons in the lateral confinement potential �E0
=2���, where ���=40 meV�. The behavior of these time
characteristics is different for smooth and nonsmooth
changes of the confinement potential. In the case of the non-
smooth process, the discontinuity of the first time derivative
of the potential barrier energy for t=T /2 leads to a corre-
sponding discontinuity of the energy versus time plot �cf.
dotted curves in Figs. 6�a� and 6�b��. The consequences of
this discontinuity can also be seen in the time dependence of
the spin-control indices �cf. solid and dashed curves in Figs.
6�a� and 6�b��. For pulse with time duration T1

�=1.6 ps the
spin indices begin to oscillate after reversing the time
changes of the potential barrier �Fig. 6�a��. The amplitude of
these oscillations decreases with increasing potential barrier
height and falls down to zero when the barrier height reaches
the starting level. For the 3-times-longer pulse T2

�=4.9 ps,
reversing the time changes of the potential barrier leads to
smaller oscillations �cf. Fig. 6�b��. Nevertheless, the time de-
pendence of the spin control indices is still slightly per-
turbed.

In the case of smooth time changes of the barrier �Eq.
�14��, the energy of the system is also a smooth function of
time �Figs. 6�c� and 6�d��. In spite of this, for the first �
pulse with T1

�=1.0 ps the changes of the potential barrier are
still seen by the electron system as rapid changes, which
leads to a bending of the spin characteristics �Fig. 6�c��.
However, the time duration of the second � pulse �T2

�

=3.0 ps� is sufficiently long so that the spin characteristics
�Fig. 6�d�� stay smooth during the full process of switching
on and off the exchange interaction. In the cases of linear and
smooth changes of the potential barrier, the time evolution of
spin indices SL,R�t� for the second � pulse with time duration
T2

� suggests that the full interchange of spins occurs as a
result of manyfold exchange of spins between the electrons.
For the second pulse the curves SL,R�t� go through zero 3
times �cf. Figs. 6�b� and 6�d��. Thus, we conclude that in
these processes we are dealing with a threefold incomplete
swapping of spins before we finally obtain a full interchange
of spin orientations. In order to obtain additional support for
the occurrence of this process, we have observed the time
changes of the second and third components of the total

wave function �Eq. �3��. The results of the simulations per-
formed show the manyfold interchange of the second and
third wave function components, which means that, in fact,
the spins of the electrons change many times.
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Based on these results, we have chosen to further study
the method of the smooth time dependence of the confine-
ment potential �Eq. �14��, which seems to be the most prom-
ising for the manipulation with spin qubits.

B. Effect of quantum dot size and potential-well
width asymmetry

If the size of the coupled QD nanostructure is sufficiently
large, the Coulomb interelectron repulsion leads to a local-
ization of electrons at the opposite potential well boundaries;
i.e., the electrons form a Wigner molecule �33�. In the case of
Wigner localization, the lowering of the potential barrier can
cause no interchange of spins during a time which is shorter
than the spin coherence time. We have checked the possibil-
ity of the occurrence of this effect by investigating the influ-
ence of the QD size of the time duration of the spin inter-
change process. The calculations have been performed for
the QD nanostructure modeled by two rectangular potential
wells separated by a potential barrier. The barrier thickness is
fixed as dB=10 nm, the potential barrier height is changed
according to Eq. �14�, the depths of both potential wells are
equal �VL=VR=−150 meV�, and the widths of both potential
wells are also the same dL=dR=d. We change the potential
well width in the interval 6 nm�d�50 nm. The spins are
interchanged in the region of size 2d+dB. Figure 7 depicts
the calculated time duration of the first and second � pulses
as a function of potential well width d. We see that the time
duration of the spin-swap operation quickly increases with
increasing QD size. The size dependence of the duration time
of the � pulses can be parametrized as follows: Tn

��d6.
These results show that even for a QD with size as small as
d�50 nm the spin-swap time can exceed the coherence
time. Figure 7 also shows that, due to the rapid increase of
Tn

�, the time interval between the subsequent � pulses
quickly increases with increasing d.

In the Heisenberg model of the electron-electron interac-
tion, the rate of spin interchange is determined by the ex-
change coupling constant, which is defined as the energy
difference between the triplet and singlet states—i.e., J=ET
−ES. For two identical QDs separated by a sufficiently thick
and high potential barrier the triplet and singlet states are
degenerate and J=0. If the potential barrier becomes thinner

and lower, the wave functions of the electrons localized in
both QDs start to overlap and the energies of triplet and
singlet states become different, i.e.—J�0. The coupling
constant J can also be changed if the QD potential wells are
different—i.e., if the QDs are asymmetric �34�. The larger
the asymmetry of the potential wells, the larger the coupling
constant. Therefore, one could expect that the asymmetry of
the QDs should lead to a shortening of the spin interchange
time. However, it turns out that this is not always the case
�35�.

We have investigated the influence of the difference of the
potential well widths on the duration time of spin inter-
change. For a fixed width of the left QD �dL=10 nm� we
have performed calculations for several values of width dR of
the right QD, changing the potential barrier according to Eq.
�14�. The results are displayed in Fig. 8 for dR=5 nm and
dR=15 nm. For the sake of clarity, we present in Fig. 8 only
the results for an electron in the right QD. Due to conserva-
tion of the total spin, the spin expectation values �Sf

L� for the
electron in the left QD can be obtained by the reflection of
Sf

R�T� curves with respect to the axis Sf
R=0. If the right po-

tential well is thinner than the left one, the energy difference
Efi between the final and initial states tends to zero for a
long duration time T of spin interchange �dashed curves in
Fig. 8�a��. However, if the right QD is thicker than the left
one, Efi does not reach zero even for long time T �Fig.
8�b��. Moreover, it takes on negative values for some time
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intervals T. The negative values of Efi can be explained by
a shift of the electron density toward a wider QD, in which
the final-state energy is lower. Analyzing the plots of Sf

R vs T
we have observed that the accuracy of the interchange of
spins reaches 99.9%, but is never equal to 100%. We con-
clude that the asymmetry of the QD-confining potential re-
sults in an increasing multiplicity of spin interchange, which
leads to a longer spin-swap duration time.

V. LATERALLY COUPLED QUANTUM DOTS

Electrostatic QDs with lateral interdot coupling have been
the subject of many recent studies �6,37,36�. In laterally
coupled QDs, the profile of the confinement potential can be
modified by varying the voltages applied to the gates. This
provides a convenient way of tuning the potential barriers
and wells. However, due to technological limitations, the
sizes of the lateral QDs, fabricated nowadays, are of the or-
der of 100 nm �14�, which makes them about 10 times larger
than the size of the vertical QD �32� measured in the growth
direction. The entire nanostructure consisting of two laterally
coupled QDs separated by a potential barrier has a typical
linear size 200–300 nm �38�. Due to this relatively large
size, the duration time of the spin rotation is expected to be
long �cf. see Sec. V B�.

For lateral QDs we still apply the theoretical model de-
scribed in Sec. II with the frozen transverse motion of elec-
trons. Now �y ,z� are transverse electron coordinates and we
assume that the electrons move in the x direction. For ex-
ample, the x axis can be directed along the effectively one-
dimensional flow of electrons between the two lateral QDs
�14�. The larger size of lateral QDs in comparison to that of
vertical QDs leads to weaker electron localization and a
weaker electron-electron interaction. According to Ref. �26�
the strength of the potential confining the electrons in the
transverse directions determines the strength of the effective
electron-electron repulsion �Eq. �1��. �We note that now Vef f
is a function of x.� The excitation energy ��� is a measure
of the strength of the transverse parabolic confinement. In
the calculations for lateral QDs, we take ���=5 meV. Then,
the transverse confinement potential rather well approxi-
mates the confinement in the double lateral QD fabricated in
the TU Delft laboratory �38�. The present model is also ap-
plicable to quantum wires, which are composed from differ-
ent semiconductors—e.g., InP and InAs �39�—which form a
confinement potential profile of potential wells and barriers.
In this case, we deal with stricktly quasi-one-dimensional
coupled QDs. In the present section, we modify the exchange
interaction between the electrons localized in laterally
coupled QDs by tuning the potential barrier, which leads to
simultaneous changes of the potential wells.

A. Symmetric quantum dots

The profile of the confinement potential for laterally
coupled symmetric QDs is assumed in the form �Fig. 9�

V�x,t� = kx2 + V2�t�exp�− �x − x0�2/d2� , �15�

where k determines the strength of the parabolic confinement
potential, V2�t� can be interpreted as the potential barrier

height for V2�t��0 and the potential well depth for V2�t�
�0, x0 is the position of the center of the potential barrier
�well�, and d is the range of the Gaussian potential.

The potential barrier separating the two QDs can be modi-
fied by changing V2�t� in the regime V2�t��0. In the calcu-
lations, V2�t� was changed in time in a smooth manner—i.e.,
according to Eq. �14�—from 9 meV to 0 and back from 0 to
9 meV. Figure 9 shows the confinement potential profiles for
the selected time instants. We see that changing the potential
barrier we simultaneously change the potential wells. If the
potential barrier is lowered, the electrons become localized
closer to each other. We define the effective QD size �dL,R

ef f � as
the width of the corresponding potential well determined at
half the barrier height. At the initial time moment, the effec-
tive size of the QDs dL

ef f =dR
ef f =100 nm, the effective thick-

ness of the barrier dB
ef f =60 nm, and the electron in the left

�right� QD has spin +� /2 �−� /2�.
In Fig. 10, we display the time evolution of spin indices

SL,R and energy V2. We see that, in this case, the spin inter-
change occurs with 100% accuracy for the first � pulse with
time duration T1

�=492 ps. We also observe that, during the
large part of the time evolution, the spins do not change. The
spins start to rotate when the potential barrier height V2 falls
down below 5 meV. This suggests that the lowering of the
initial height of the potential barrier should lead to a shorter
spin rotation time. If the initial barrier height decreases, the
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effective QD size decreases too. This means that the short-
ening of the spin rotation time results from the size effect,
discussed in Sec. IV B. For V2=5 meV the effective size of
the potential wells and the barrier decrease to dL,R

ef f =76 nm
and dB

ef f =42 nm.
The fastest rate of spin interchange is observed for V2

�1.5 meV. Then, the effective QD sizes are dL,R
ef f =40 nm

and dB
ef f =42 nm.

If the QD size is of the order of several tens of nanom-
eters, the electrons are spatially separated even in the ab-
sence of a potential barrier �33�. For QDs of this size the
Coulomb repulsion is sufficiently strong so that the electrons
are localized in the QD boundaries and form Wigner mol-
ecules �33�. In order to achieve spin swapping the spatial
wave functions of both electrons have to overlap. The larger
the overlap, the faster the spin-swap operation. In the model
nanostructure �Fig. 9�, the effective size of the potential bar-
rier is much smaller than that of the double potential well.
Therefore, we can force the electrons to be localized in the
same region of the nanostructure if we allow the parameter
V2 in Eq. �15� to take on a negative values during the time
evolution. As a result, the potential barrier converts into a
potential well �Fig. 11� and the electrons become localized in
the same space region for some time during the changes of
the confinement potential.

In the first computer run, the parameter V2 has been
changed in a smooth manner from 9 meV to −3 meV. As
expected, we have obtained a considerably shorter duration
time of the spin rotation; namely, the first � pulse lasted
merely for 46.1 ps—i.e., it was more than 10 times shorter
than in the previous case when we only turned off the poten-
tial barrier. A question appears: to what extent can we
shorten the duration time of spin rotation by lowering the
potential well bottom? In order to answer this question, we
have performed a series of simulations, in which the mini-
mum value V2

min of the parameter V2 was lowered from 0 to
−9 meV. In each simulation, the initial value of the param-
eter V2 was the same: V2�t=0�=V2

max=9 meV. The results
are shown in Fig. 12. According to our expectation, the spin-
swap duration time becomes shorter if V2

min decreases. How-
ever, we also observe an undesirable effect; namely; the pro-
cess ceases to be adiabatic, which results from the increasing
amplitude of the changes of V2 for a given process duration

time T. The nonadiabaticity is visible in Figs. 12�a�–12�d� as
oscillations of the energy difference Efi�T� and deforma-
tions of plots Sf

R�T� for small T. For V2
min=0 the process can

be treated as adiabatic if T�25 ps, whereas for
V2

min=−9 meV the adiabaticity is reached if T�55 ps. We
conclude that the lowering of V2

min below −3 meV is not
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advantageous. The shortest time of the full interchange of
spins has been obtained for V2

min=−3 meV. In this case, the
orientation of spins was changed in a single swap after time
T1

�=46.1 ps with accuracy 100%.
We note that for laterally coupled QDs the conversion of

the potential barrier into a potential well means that a section
of quantum wire is formed below the gate electrodes, which
create the confinement potential in the electrostatic QDs
�38�. However, in this process, the spin qubits can be de-
stroyed if the electrons will tunnel from the two-dimensional
electron gas �38� to the QD. Therefore, it seems that the
mechanism of conversion of the interdot potential barrier
into the potential well will not lead to the required rotation of
spins in laterally coupled QDs. However, this mechanism
can be applicable to the spin qubits in vertically coupled
QDs �31� and the coupled QDs formed in quantum wires
�39�.

B. Asymmetric quantum dots

The bias voltage applied to coupled QDs leads to an
asymmetry of the confinement potential profile; i.e., the po-
tential well depths become different. This suggests another
mechanism of swapping the spins, which can be modeled by
raising and lowering the bottom of one potential well. Rais-
ing the potential well bottom of one QD will stimulate the
flow of the electron to the second QD. Finally, both electrons
will be localized in the same QD. The subsequent lowering
of the potential well bottom back to the initial level will
force the flow of one of the electrons to the first QD. We
expect that a suitable adjustment of the potential well should
cause the desired electron spin swapping. This mechanism is
advantageous since, according to the results of Sec. IV B, a
stronger electron localization leads to a shorter spin-
swapping time.

In order to simulate this process, we model the confine-
ment potential by the linear combination of two Gaussians—
i.e.,

V�x,t� = V1 exp�− �x − x1�2/d1
2� + V2�t�exp�− �x − x2�2/d2

2� ,

�16�

where V1 and V2�t� are the potential well depths, x1 and x2

are the positions of the centers of the QDs, and d1 and d2
determine the sizes of the QDs �Fig. 13�. In Eq. �16�, indices
1 and 2 correspond to the left and right QD, respectively.

We fix V1 and tune the potential well depth of the right
QD by changing V2�t� according to the smooth function of
time �Eq. �14��. As in the previous simulations, the electron
in the right �left� QD has spin +� /2 �−� /2� at the initial time
instant. We have performed several simulations for different
time intervals T with the other parameters of the confinement
potential �Eq. �16�� being fixed—namely, V1=−10 meV, d1
=d2=64 nm, and x2=−x1=58 nm. For t=0 �solid curve in
Fig. 13� the bottom of both potential wells is at the level V
=−10.4 meV, d1=d2=48 nm, dB=51 nm, and the relative
height of the potential barrier is 1.7 meV. In each computer
run, the initial �minimal� value of the parameter V2 is set to
V2�t=0�=V2

min=−10 meV. The potential profiles shown in
Fig. 13 suggest that it is not necessary to remove the right

QD potential well entirely in order to localize both electrons
in the left QD. Again, we are looking for an answer to the
question, for which range of changes of the potential well
bottom of the right QD is the spin-swap duration time the
shortest? The results of the simulations are displayed in Fig.
14. As in previous figures, for the sake of clarity, we present
only the spin expectation values Sf

R for the right QD, since Sf
L

can be obtained from the spin conservation principle. If the
parameter V2 is changed from V2

min=−10 meV to V2
max=0,

the amplitude of changes of the right QD potential well bot-
tom is so large that even for T�100 ps the spin interchange
process is nonadiabatic. In this case, we observe the spin
swapping with accuracy 99.8% for T��200 ps. The process
of a full interchange of spins becomes adiabatic for T of the
order of several hundred picoseconds. Therefore, the process,
during which one of the potential wells is entirely removed,
is not advantageous. In order to remove this disadvantage,
we reduce the amplitude of changes of parameter V2 by de-
creasing the maximum value V2

max. Useful results are ob-
tained when raising the potential well bottom to V2

max=
−3 meV �Fig. 14�a��. The shortest � pulse time �T1

�

=127 ps� has been obtained for V2
max=−6.1 meV �Fig.

14�c��. In this case, the process is adiabatic for T�100 ps.
Similarly as for symmetric QDs, there exists an optimal re-
gime of changes of the parameter V2, in which the spin-swap
time is minimal and the process is adiabatic. We note that the
parameter V2

max cannot be too small since then the potential
well bottom is not raised high enough and the tunneling
probability of the electron from the right to left QD is too
small, which leads to a long spin-swap duration time. For
example, for V2

max=−7 meV, T1
�=713 ps.

We conclude that the time changes of the confinement
potential, which lead to asymmetry of QDs, result in a con-
siderable shortening of the spin-swap time if the amplitude
of potential well changes is of the order of �5 meV.

VI. DISCUSSION

Coherent control of electron spin states in coupled QDs
was demonstrated experimentally by Petta et al. �18�. The
authors �18� showed that a suitable change of gate voltages
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FIG. 13. Profile of the confinement potential V �Eq. �16�� as a
function of coordinate x for several time instants. The parameter
V1=−10 meV is fixed. At the initial moment, V2�t=0�=−10 meV
�solid curve�. Shown are also the potential profiles for V2=−7, −6.1,
−5, −3, and 0 meV �from bottom to top�.
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allows for control of exchange interaction and coherent ma-
nipulation of two-electron spin states. This paper provides a
good starting point for an implementation of coupled QDs to
solid-state-based quantum computation.

When using the controlled exchange interaction to ma-
nipulate with electron spins in coupled QDS, we are dealing
with the double-electron occupancy problem �17�, which
leads to possible quantum computation errors. Schliemann et
al. �17� studied this problem using the Hund-Mulliken
molecular-orbital method with six-element basis. The authors
�17� calculated the time-dependent transitions between the
spin-swapped initial and final two-electron states and, for the
assumed smooth time dependence of the tunneling ampli-
tude, obtained adiabatic transitions between stationary states.
We note that the present approach allows us to simulate a
temporal evolution of the system in a complete basis in
space-coordinate representation. Therefore, we take into ac-

count the dependence of the two-electron wave function on
the varying confinement potential; i.e., we can directly ob-
serve the changes of QD occupancy that lead to a switching
on and off of the exchange interaction. In order to illustrate
the effect of the QD occupancy, we have calculated the one-
electron probability density ��x , t� by integrating the two-
electron probability density ��x1 ,x2 , t�= ���x1 ,x2 , t��2 over
the coordinate x2 �cf. Eq. �14� in Ref. �28��. The results are
presented in Figs. 15�a� and 15�b� as functions of time and
one-electron coordinate x=x1. Figure 15�a� corresponds to
the second peak in Fig. 14�b�, for which T2

�=88.8 ps and
Sf

R�T2
��=0.93	 �� /2�, while Fig. 15�b� corresponds to the

fifth peak in Fig. 14�b�, for which T5
�=269 ps and Sf

R�T5
��

=0.99	� /2. The results of Figs. 15�a� and 15�b� can be
interpreted as follows: at the initial time instant, both elec-
trons are localized in different QDs, but after raising the
potential well bottom of the right QD, the electron, initially
localized in the right QD, tunnels to the left QD, which leads
to a double occupancy of the left QD. Next, the potential
well bottom of the right QD is lowered, which causes one of
the electrons to tunnel back to the right QD. The electron
densities in Figs. 15�a� and 15�b� considerably differ be-
tween each other. In case �a�, in the doubly occupied QD, the
electron probability density oscillates in time, which demon-
strates that the electrons are in nonstationary states—i.e., can
occupy both the ground and excited states. The electrons are
not in the energy eigenstates, since the changes of the con-
finement potential are too fast. These oscillations of the elec-
tron density are still present in the final state—i.e., after
separation of the electrons. Figure 15�b� corresponds to the
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FIG. 14. Expectation value Sf
R �solid curve� of the z-spin com-

ponent of the electron in the right QD and energy difference Efi

�dotted curve� as functions of duration time T of potential changes
for asymmetric QDs. �a� V2

max=−3 meV, �b� V2
max=−5 meV, and �c�

V2
max=−6.1 meV.
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FIG. 15. One-electron probability density ��x , t� as a function of
coordinate x and time t. Part �a� corresponds to the second peak on
Fig. 14�b�, part �b� corresponds to the fifth peak on Fig. 14�b�.
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adiabatic process �cf. Fig. 14�b� for T�250 ps�, during
which the electrons are in the ground state of the time-
dependent Hamiltonian. In case �b�, the electron probability
density changes smoothly in time and does not exhibit oscil-
lations. The results of Fig. 15�b� are in qualitative agreement
with those of Schliemann et al. �17�, who considered smooth
time changes of the tunneling amplitude.

We have studied the processes with different rates of time
changes of the confinement potential. We have shown that
the spin-swap operation in the coupled QDs can be more
complicated than that resulting from the simple Heisenberg
model. In particular, sudden changes of the confinement po-
tential can lead to nonadiabatic processes, during which the
quantum information stored in the spin qubits is destroyed.

VII. CONCLUSIONS AND SUMMARY

In the present paper, we have proposed a method for a
theoretical quantitative description of the spin-swapping pro-
cess in a double QD. Using this method we have estimated
the spin-swap duration time induced by the exchange inter-
action between electrons in vertically and laterally coupled
QDs. The results obtained are also valid for quantum wires,
which contain coupled QDs. The process of switching on and
off the exchange interaction, considered in the present paper,
is triggered by the corresponding time changes of the con-
finement potential profile. The time dependence of the con-
finement potential is of crucial importance for the efficiency
of the spin interchange. We have shown that the confinement
potential should change smoothly and sufficiently slowly in
time to ensure the adiabaticity of the spin-swap operation.

We have also shown that full spin interchange �with 100%
accuracy� can hardly be achieved in a single-step spin-swap
process. In the coupled QD system, full spin interchange
occurs, in general, as a result of many steps of incomplete
spin swaps. The most promising results—i.e., the shortest
time of full spin swapping in the adiabatic process—have
been obtained when the shape of the potential in the interdot
region has been changed according to the smooth function of
time from the potential barrier to the potential well. How-
ever, it seems to be difficult to realize this process experi-
mentally in the same nanodevice by merely changing the

voltages applied to the gate electrodes, which define the lat-
erally coupled QDs.

The results obtained for vertical asymmetric QDs with
different widths of the potential wells �Sec. IV B� are rather
disappointing: it turns out that this type of asymmetry of the
confinement potential leads to an increase of the spin-swap
duration time, since in this case a full spin swap is obtained
after several incomplete spin swaps. However, in the case of
asymmetry discussed in Sec. V B for the lateral QDs—i.e.,
different depths of the potential wells—we can always
choose the range of changes of the QD parameters in order to
obtain full spin swapping in a single step. In vertically and
laterally coupled QDs the spin-swap duration time decreases
if the range of the confinement potential becomes shorter.
This leads to the conclusion that the size of the coupled QD
system should be smaller than �100 nm in order to obtain a
sufficiently short spin swap time. We provide numerical es-
timates of the nanostructure parameters, for which the spin-
swap operation is optimally performed.

One can consider the problem of scalability of the present
two-electron coupled QD system. The scalable QD system
might be realized, e.g., according to the proposal �4,40�, as
several QDs embedded in a microcavity and interacting with
cavity modes.

In summary, the exchange interaction controlled by time
changes of the confinement potential leads to a swapping of
the electron spins and can serve as a mechanism to manipu-
late with spin qubits in coupled QDs. The spin-swap duration
time, which is several orders of magnitude shorter than the
spin-coherence time, can be obtained for coupled QDs of
possibly small size, in which an alternate gate voltage in-
duces the confinement potential, which changes sufficiently
smoothly and slowly in time. Fabrication of nanodevices,
which satisfy these requirements, is a challenging task for
nanotechnology.
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