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Binding energies of negativesX−d and positive trionssX+d in quantum wires are studied for strong quantum
confinement of carriers which results in a numerical exactly solvable model. The relative electron and hole
confinement have a strong effect on the stability of trions. For equal hole and electron confinement,X+ is more
stable but a small imbalance of the particle confinement towards a stronger hole confinement, e.g., due to its
larger effective mass, leads to the interchange ofX− and X+ recombination lines in the photoluminescent
spectrum as was recently observed experimentally. In case of largerX− stability, a magnetic field oriented
parallel to the wire axis leads to a stronger increase of theX+ binding energy resulting in a crossing of theX+

andX− lines.
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I. INTRODUCTION

Trions are charged exciton complexes formed when an
electron or a hole is bound1 to a neutral excitonsXd. The
binding energies of the complexes are very small in bulk, but
they are substantially enhanced in structures of reduced di-
mensionality, i.e., in quantum wells2–8 and quantum
wires.9–11

Due to the larger effective mass of the hole, in bulk12 as
well as in strictly two-dimensional confinement3 the binding
energy of positive trionssX+d is larger than the negative trion
sX−d binding energy. However, in quantum wells the
observed5 X− and X+ binding energies are nearly equal,
which is explained4,5 by a stronger hole confinement within
the quantum well enhancing the hole-hole interaction. The
magnetic field perpendicular to the plane of confinement en-
hances more strongly theX− stability leading to a crossing of
X− and X+ binding energies.13,14 For trions localized on a
defect of the quantum well potentialX− can become more
stable thanX+ even without the presence of an external mag-
netic field.15 The combined quantum well and defect confine-
ment creates a three-dimensional potential similar to a quan-
tum dot. In quantum dots the confinement-related hole-hole
interaction enhancement leads to the interchange of the order
of the X− and X+ recombination lines in the photolumines-
cencesPLd spectrum already for quantum dot diameters as
large as 24 donor Bohr radii.16 For smaller dots theX+ line
was predicted to become even more energetic16,17 than theX
line, which was recently confirmed experimentally.18 In
coupled dots17,19 this effect leads to the ground-state disso-
ciation of X+,17,19 for which the holes in the ground state
occupy different dots.

The present work is motivated by a recent experimental
study11 of positive and negative exciton trions in V-groove
GaAs/AlGaAs quantum wires. The negative trion was found
to be distinctly more stable thanX+ sbinding energies ofX−

and X+ were determined as 4.2 and 2.9 meV, respectivelyd.
Here, we indicate that the observed11 order of X− and X+

energy lines may be a consequence of modifications of the

interactions due to a stronger hole confinement. In a previous
theoretical study9 of trions in quantum wiresX+ was found to
be more stable thanX−, which was obtained in the case of
equal hole and electron confinement. A crossing ofX− andX+

PL lines as functions of the wire width has previously been
obtained in a quantum Monte Carlo study10 of a quantum
wire with a square well confinement potential. In this paper
we focus on the effect due to different electron and hole
confinement leading to modifications of the effective inter-
particle interactions. We study the correlations between elec-
trons and holes and consider the effect of a magnetic field
oriented parallel to the quantum wire. The study of the sta-
bility of the trions is performed as function of the electron
and hole confinement instead of dimensions of the wire. It
has been demonstrated20 that in realistic quantum wires with
strong confinement the binding energy of neutral excitons is
governed by a size dependent parameter independent of the
shape and composition of the wire.

The stronger hole confinement results from its weak pen-
etration into the barrier material due to its larger effective
mass than the electron band mass. For the spillover of the
electron wave function out of the quantum wire, recently
observed in self-assembled InAs/ InP quantum wires,21 the
ratio of the electron to hole confinement can in principle be
arbitrarily large.21 However, in the following we show that
even asmall enhancement of the hole confinement changes
the order of theX− andX+ PL recombination lines.

For the purpose of the present study we apply the single
band model for the hole and consider a harmonic oscillator
confinement potential in the directions perpendicular to the
wire, referred to as “lateral” in the following. The present
model does not account for the interface between the wire
and barrier materials, so the effective mass discontinuity and
dielectric constant mismatch are neglected. These effects
usually strengthen the electron-hole interaction and weaken
the penetration of the wave functions into the barrier. They
are, however, of a secondary importance for
GaAs/AlGaAs,22 InAs/ InP,23 and CdTe/ZnTe24 quantum
wires. Note that, the present modelling is inapplicable to the
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free-standing quantum wires, where the image charge effect
is extremely strong.25

We assume that the lateral confinement is strong, so that
only the lowest subband for the electron and hole is occu-
pied. This assumption allows for a reduction of the
Schrödinger equation to an effective two-dimensional
form. Usually the solution of the trion eigenequations is
very challenging and requires extensive variational
calculations2–4,6,7,12,16,17or application of the quantum Monte
Carlo methods.10,15 The present problem is unique in the
sense that it allows for an exact inclusion of the interparticle
correlations.

The paper is organized as follows: the next section con-
tains the theory, the results are given in Sec. III, the conclu-
sion and summary are presented in Sec. IV.

II. THEORY

We adopt the donor units, i.e., donor Bohr radius
ad=4pe0e"2/mee

2 for the unit of length and twice the donor
Rydberg 2Rd="2/mead

2 as the unit of the energy, whereme is
the band electron effective mass ande is the dielectric con-
stant. In these units, the Hamiltonian for a single electron in
a quantum wire with harmonic oscillator lateral confinement
has the form

He = −
1

2

]2

]ze
2 + He

l , s1d

with the lateral Hamiltonian

He
l = −

1

2
S ]2

]xe
2 +

]2

]ye
2D +

1

2le
4sxe

2 + ye
2d, s2d

wherele is the length of the harmonic oscillator confinement
for the electron. The ground-state wave function of the
Hamiltonians2d is Ce=expf−sx2+y2d /2le

2g / leÎp with the en-
ergy eigenvalueEe=1/le

2. In the adopted single-band ap-
proximation the hole ground-state wave functionsChd of the
lateral confinement has the form ofCe but with lh—the har-
monic oscillator length for the hole instead ofle, and the
energy isEh=1/slh

2, wheres=mh/me is the hole to electron
effective mass ratio, or, in other words, the hole mass in the
donor units. The negative trion Hamiltonian can be written as

H− = He1 + He2 + Hh −
1

re1h
−

1

re2h
+

1

r12
, s3d

where re1hsre2hd is the distance between the firstssecondd
electron and the hole andr12 is the electron-electron distance.
We assume that the lateral confinement is sufficiently large
that the trion wave function can be effectively separated into
a product

csr e1,r e2,r hd = Csxe1,ye1dCsxe2,ye2dCsxh,yhd

3 x−sze1,ze2,zhd, s4d

wherex− is the negative trion wave function of the motion
along the wire. The Hamiltonians3d integrated over the lat-
eral degrees of freedom with the wave functions4d produces
the effective trion Hamiltonian

H−
ef = −

1

2
S ]2

]ze1
2 +

]2

]ze2
2 D −

1

2s

]2

]zh
2 + Vefsle;ze1 − ze2d

− Vefsleh;ze1 − zhd − Vefsleh;ze2 − zhd, s5d

with leh=Îsle
2+ lh

2d /2 and the effective interaction
potential9,26

Vefsl ;zd = sp/2d1/2erfcsuzu/Î2ldexpsz2/2l2d/l , s6d

which is finite at the originfVefsl ;0d=1/lg and approaches
the 1/z asymptotic at largez. Hamiltonian s5d is written
with respect to the sum of the ground-state energies of
noninteracting two electrons and one hole. Therefore, the
absolute value of thesnegatived energy of a bound state
is interpreted as the energy needed to separate all the
particles away from one another. Introducing the center-of-
mass coordinateZ=sze1+ze2+szhd / s2+sd one obtains
H−

ef=−s1/2Mds]2/]Z2d+H−
rel, whereM =2+s is the negative

trion mass andHrel is the relative motion Hamiltonian

H−
rel = −

1

2m
S ]2

]zh1
2 +

]2

]zh2
2 D −

1

s

]

]zh1 ] zh2
+ Vefsle;zh1 − zh2d

− Vefsleh;zh1d − Vefsleh;zh2d, s7d

with the reduced mass of an electron-hole pairm
=s / s1+sd, and the coordinates of the relative electron-hole
positionszh1=zh−ze1 and zh2=zh−ze2. In these coordinates
the interelectron distance along the length of the wire is
z12= uzh1−zh2u. The wave functionx− is separable into a prod-
uct of the center of mass and relative wave function
x−sze1,ze2,zhd=xCMsZdxszh1,zh2d.

The corresponding relative Hamiltonian for the positive
trion has the following form:

H+
rel = −

1

2m
S ]2

]zh1
2 +

]2

]zh2
2 D −

]2

]zh1 ] zh2
+ Vefslh;zh1 − zh2d

− Vefsleh;zh1d − Vefsleh;zh2d, s8d

with zh1, zh2 standing here for the relative position coordi-
nates of the first and second hole with respect to the electron
position. The reference energy for the Hamiltonians8d is the
energy of the dissociated complex, i.e., 2Eh+Ee.

In the following we consider also the exciton for which
the effective Hamiltonian written with respect to the energy
of a dissociated electron and hole pair reads

HX = −
1

2m

]2

]zeh
2 − Vefsleh;zehd. s9d

The lowest eigenvalue of this Hamiltonian is equal to minus
the exciton binding energys−EB

Xd. On the other hand the
difference between −EB

X and the eigenvalues of trion Hamil-
toniansfs7d and s8dg is equal to the trion binding energies

sEB
X−

,EB
X+

d with respect to dissociation into an exciton and a
free electronsfor X−d or a holesfor X+d. Trion binding ener-
gies are equal to the redshift of the trion recombination lines
with respect to the exciton line in the PL spectrum.
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We solve the relative Hamiltonian eigenequations using
the imaginary time technique27 on a two-dimensional grid
with a finite-difference approach. We use 201 points in both
zh1 andzh2 directions. The size of the computational box in
both directions is chosen “self-consistently” to be 12 times
larger than the average distance between the particles of the
same charge defined askszh1−zh2dl1/2.

In the present calculations we assumed harmonic oscilla-
tor lateral confinement which allows us to simplify the prob-
lem considerably because of the availability of analytical
formula9,26 for the effective one-dimensional interaction. The
confinement lengthsle and lh parametrize the strength of the
particle confinement. Since the single-particle energies can-
cel in the calculation of the trion binding energies, the appli-
cability of the present results is wider. In fact the present
results can be used for any form of the lateral confinement
swhich does not even have to be cylindrically symmetricd as
long as it produces the same effective interaction potential.
For instance the electron-electron interaction potential for
le=2.95 and 6 nm is very wellsi.e., with a precision better
than 2%d reproduced for a GaAs quantum wiresme=0.067d
with a circular square well confinement of depth 320 meV
and diameters 9.6 and 22.8 nm, respectively. For elliptical
harmonic oscillator confinement with different oscillator
lengths in x and y directions slx and ly, respectivelyd we
cannot give a closed analytical formula for the effective in-
teraction potential. Nevertheless, we have found via a nu-
merical integration that the interaction potential between two
electrons in an elliptical wire can be surprisingly well repro-
duced by formulas6d for a circular wire with an effective
l =slx+ lyd /2. The numerically calculated deviation between
the two potentials is not larger than 2% for any interelectron
distance. The essential assumption of the present model
therefore does not rely on the form of the lateral confinement
but on its strength, which has to be large enough to prevent
the Coulomb interactions from deforming the lateral wave
functions. The applied assumption of the frozen lateral de-
grees of freedom for the electron and the hole is applicable
for the exciton binding energy whenle,ad and lh,ad. This
condition guarantees that the length of the lateral confine-
ment of the carriers is smaller than the bulk exciton radius,
and that the sum of the lateral confinement energies for the
electron and the hole are at least two times larger than the
exciton binding energy in bulk. For trions the applied ap-
proximation is better justified and the conditions are less
stringent because the trions have a larger size and have
smaller binding energies than the exciton.

III. RESULTS

We start the presentation of our results by discussing the
properties of trions in quantum wires with equal lateral con-
finement for the electron and the holesSec. III Ad, and then
in Sec. III B we show the effect of different confinements for
the stability ofX+ andX− trions. Section III C describes the
effect of the magnetic field oriented parallel to the axis of the
wire.

A. Identical electron and hole lateral confinement

For equal electron and hole lateral confinement
sle= lh=Ld the electron-electron, the hole-hole, and the

electron-hole interactions have the same form. The total in-
teraction potential, identical for both types of trions, is plot-
ted in Fig. 1sad as function ofzh1 and zh2 for L=1. The
regions of positivesnegatived potentials are plotted with red
sblued colors. Zero of the interaction potential is marked with
a dash-dotted line. The interaction potential is minimal along
the lineszh1=0 andzh2=0 at which one of the two electrons
and the hole are in the same positionsfor X−d or the position
of one of the holes coincides with the electron positionsfor
X+d. The potential is maximal along the diagonalzh1=zh2 at
which the two particles of the same charge are localized in
the same point along the wire length. Figure 1sbd shows the
cross sections of the interaction potential along the three
straight lines in Fig. 1sad as function of the interelectronsX−d
or interholesX+d distancez12. On the antidiagonal the inter-
action has the form of a triangular potential wellfcf. solid
line in Fig. 1sbdg. Moving along the antidiagonal is equiva-
lent to interchange the position of the two particles of the
same charge with fixed position of the third particle of the
opposite charge. Along the paths plotted with dotted and
dashed lines in Fig. 1sad, which are shifted below the antidi-
agonal, the potential has the form of a double potential well

FIG. 1. sad sColor onlined Contour plot of the interaction poten-
tial V=VefsL ;zh1−zh2d−VefsL ;zh1d−VefsL ;zh2d as function of the in-
terparticle distances with lateral confinement lengthL= le= lh=1.
Distances and energies are given in donor units. The dashed-dotted
line corresponds toV=0. sbd The interaction potential plotted for
L=1 along the lineszh2=−zh1, zh2=−zh1−1.5, and zh2=−zh1−3
marked insad with sthickd solid, dotted and dashed lines respec-
tively, as function of the interelectronsX−d or interholesX+d dis-
tancez12=zh1−zh2. Thin solid line shows the −3/uz12u asymptotic.
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fsee Fig. 1sbdg with a barrier near the diagonal resulting from
the repulsion of the equally charged particles. For largez12
the potential approaches −3/z12 asymptotically which is
shown by the solid line in Fig. 1sbd.

Contour plots of the wave function of the negative and
positive trions calculated for different effective mass ratios
are plotted in Fig. 2 forL=0.2. For le= lh the negative and
positive trion relative Hamiltonianss7d ands8d differ only by
the factor standing in front of the mixed derivatives1/s for
X− and 1 forX+d. The ground-state wave function fors=1 is
the same for both trionsfcf. Figs. 2sad and 2sbdg. The first
excited state ofX+, which is antisymmetric with respect to
the interchange of the holes is unbound. Its wave function
calculated for the size of the computational box 1003100
sin donor Bohr radius unitsd is plotted in Fig. 2scd. For the
unbound state no computational box is large enoughsi.e., the

wave function vanishes only at the ends of the computational
boxd. The wave function is nonzero only near both axis. One
of the holes stays at the position of the electron and the other
strives to be as far as possible from the other two particles.

Results fors=1.98 plotted in Figs. 2sdd–2sfd correspond
to CdTe material parameterssmh=0.19m0,me=0.096m0d
with the donor unitsad=5.4 nm and 2Rd=27.6 meV. The
probability density maximum fors=1 is split into two ex-
trema at the antidiagonal of the plotsfcf. Figs. 2sad and 2sbdg.
For s.1 these two extrema merge into a single one forX−

fsee Fig. 2sddg and forX+ they become more distinctly sepa-
rated fsee Fig. 2sedg and the excited state forX+ becomes
boundfcf. Fig. 2sfdg.

Figures 2sgd–2sid and 2sjd–2sld for s=6.7 and
s=15.2 correspond to GaAssmh=0.45m0, me=0.067m0,
2Rd=11.9 meV, ad=9.8 nmd and InAs smh=0.41m0,

FIG. 2. Wave functions for
negative sa,d,g,jd and positive
sb,c,e,f,h,i,k,ld trions for le= lh=L
=0.2 in zh1 and zh2 coordinates
shorizontal and vertical axis, re-
spectivelyd for different values of
the mass ratios. Plots sc,f,i,ld
show the wave functions of the
excited X+ state antisymmetric
with respect to the interchange of
the holes. The dashed line insf,i,l d
shows the node of the wave func-
tions. Plot scd corresponds to an
unbound state, for other plots the
computational box is larger than
the fragment displayed and the
states are bound.
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me=0.027m0, 2Rd=3.2 meV, andad=29.7 nmd material pa-
rameters, respectively. Increasings has an opposite effect on
the X− and X+ wave functions. For the negativespositived
trion the local minimum along the diagonalzh1=zh2 is less
smored pronounced. The wave function evolution withs is
related to the tunneling of the particles of the same charge
via the potential barrier presented in Fig. 1sbd. The electrons
in X− with light effective masses tunnel easily through the
diagonal barrier due to the interelectron repulsion. On the
other hand the diagonal barrier is effectively much larger for
the heavy-mass holes which prevents its penetratation at
large s which leads to the appearance of the characteristic
maxima elongated along the diagonal in Figs. 2sed, 2shd, and
2skd.

The correlation between the particles in the complexes
is more clearly visible in the pair correlation functions
plotted in Fig. 3. The electron-hole correlation function
is calculated asfehszd=edzh1dzh2uxszh1,zh2du2dsz−zh1d and
the hole-holesfor X+d, and electron-electronsfor X−d as
fsameszd=edzh1dzh2uxszh1,zh2du2dfz−szh1−zh2dg. The Coulomb
hole in the hole-hole correlation inX+ is much larger than for
electrons inX− but at the expense of slightly weaker relative
electron-hole localization.

The binding energies of the exciton and the trions for
L=0.2 are plotted as functions ofs in Fig. 4. All the binding
energies are increasing functions ofs. In bulk the first ex-
cited state of the positive trion is antisymmetric with respect
to the hole interchange,28 possess theP symmetry and is
bound for s.4.2. The critical value of the mass ratio is
much smaller for quasi-one-dimensionals1Dd confinement.9

Here, forL=0.2 the excitedX+ state is bound fors.1.2 ssee
Fig. 3d. For quasi-1D confinement the lowest excited state
has theSsymmetry with respect to the axis of the wire but is
of odd spatial parity, i.e., it is antisymmetric with respect to
simultaneous change of sign of all thez coordinatesssee Fig.
2d. The ground state ofX+ becomes degenerate with respect
to the symmetry of the wave function, i.e., the hole inter-
change, for larges for which tunneling through the diagonal
potential barrierscf. Fig. 1d disappears. At larges also the
probability density of the excitedX+ level becomes identical
to the ground-state probability densityscf. Fig. 2d. X− does
not possess a bound excited state fors.1.

The inset of Fig. 5 shows the ground-state energy for
s=15.2 as function of the lateral confinement length. In the
L=0 limit the average interparticle distances decrease to zero
and the energies diverge to minus infinity. This is a conse-
quence of the Coulomb interaction singularity in one
dimension.29 The main part of Fig. 5 shows the shifts of the
trion PL lines with respect to the exciton linescalculated as
the difference of the eigenvalues presented in the insetd for
different values ofs. It turns out that the binding energies
have a power law dependence onL, i.e., L−q, for theX− and

FIG. 3. Electron-holessolid linesd, electron-electron, hole-hole
sdashed linesd pair correlation functions plots forX− andX+ slines
marked by black squaresd at s=6.72 andle= lh=0.2.

FIG. 4. Binding energies of the negativesdashed linesd and posi-
tive trion ssolid linesd states forL=0.2 as function of the mass ratio
s. Higher solid curve corresponds to theX+ state antisymmetric
with respect to the interchange of electrons and holes, i.e., it is the
first excited state. Thin vertical lines show the values ofs=1, 1.98,
6.72, and 15.2. Dotted curve, referred to the right axis, shows the
exciton ground-state eigenvalue. Energies and lengths are in donor
units.

FIG. 5. sColor onlined Binding energies of the trions as func-
tions of the length of the lateral confinement. Lines fors=1, 1.98,
6.72, and 15.2 plotted with black, blue, red, and green colors, re-
spectively. Fors=1 binding energies ofX− andX+ are equal. The
dashed lines are the energies of the excitedX+ states antisymmetric
with respect to the interchange of the holessX− does not possesses
a bound excited state fors.1d. Lines for X− at s=1.98 and 6.72
have been omitted for clarity—they are situated between thes=1
line ands=15.2 line forX− ssee Fig. 4d. Inset: energy eigenvalues
for neutral exciton and charged trions fors=15.2. Energies and
lengths are given in donor units.
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X+ ground state presented in this figureq changes from 0.83
ss=1d to 0.91sX+ for s=15.2d.

B. Effect of different electron and hole lateral confinement

Let us now consider the interaction potential for stronger
hole confinement. Figures 6sad and 6sbd show the interaction
potentials forle=1 as in Fig. 1 but for smallerlh=0.5. For
both the negativefcf. Fig. 6sadg and the positive trionfcf.
Fig. 6sbdg the potential minima atzh1=0 andzh2=0 become
deeper with respect to thele= lh case presented in Fig. 1. For
X− the electron-electron interactionsthe diagonal potential
barrierd is not affected by the change oflh fcompare Figs. 1
and 6sadg. On the other hand the hole-hole repulsive interac-
tion for X+ is strongly increased.

The effect of the hole confinement on the trion binding
energies is plotted in Fig. 7 for GaAs material parameters
and fixed values of the electron lateral confinement. Consis-
tently with the results of Sec. III A forle= lh the positive
trion is more stable than the negative trion. A decrease oflh
below the value ofle results in the interchange of theX− and

X+ energy lines.30 This is due to the enhanced hole-hole in-
teraction shown in Fig. 6sbd. The negative trion binding en-
ergy is a monotonous function of the hole confinement
length, the largerlh the smaller is the electron-hole interac-
tion stabilizing X−. The situation is more complex forX+,
since with increasinglh also the destabilizing hole-hole in-
teraction decreases. As a consequence the positive trion bind-
ing energy possesses a maximum as function oflh.

The difference of the positive and negative trion binding
energies is plotted in Fig. 8. Both the trions are equally stable
for lh=0.92le−0.38 nm. For lh larger ssmallerd than
0.92le−0.38 nmX+ is moreslessd stable thanX−. The maxi-
mum of theX+ binding energy presented in Fig. 7 follows a
path that is nearly linear forle.2 nm and is approximately
parametrized bylh=1.62le−1.98 nm. For the points at the
left of the dash-dotted line the electron-hole attractive inter-
action stabilizing the trion is so weak with respect to the
electron-electron repulsive interaction destabilizing the com-
plex that the negative trion stops to be boundssee also the
line for X− at le=2.95 nm in Fig. 7d. The absence of the
negative trion binding requires a substantially weaker hole
confinement than the confinement of the electron which is
rather impossible to obtain in the presently produced quan-
tum wires and would require the valence band offset between
the wire and the matrix to be much smaller than the conduc-
tion band offset. Moreover, the present modeling based on
the assumption that the lateral wave functions are not af-
fected by the interaction is likely to fail since the hole wave
function is very likely to become more localized due to the
attraction by strongly confined electrons.

The fit of the calculatedX− andX+ binding energies to the
experimental data is obtained at the crossing of the green and
yellow lines, i.e., forle=2.95 nm andlh=1.3 nm. The ob-
tained fit corresponds to realistic values which give a general
idea on the particle confinement in the wiresthe
measurements11 were performed on a V-groove

FIG. 6. sColor onlined Contour plot of the interaction potential
for sad negative trionV=Vefsle;zh1−zh2d−Vefsleh;zh1d−Vefsleh;zh2d
and sbd positive trionV=Vefslh;zh1−zh2d−Vefsleh;zh1d−Vefsleh;zh2d
as function of the interparticle distances for the lateral confinement
lengthsle=1 andlh=0.5. Distances and energies are given in donor
units.

FIG. 7. sColor onlined Shifts of the trion recombination PL lines
with respect to the PL exciton line as function of the hole confine-
ment lengthslhd for GaAs. Different values of the electron confine-
ment length are plotted with different colors.

FIG. 8. sColor onlined Difference of the positive and negative
trion binding energiessin milli-electron-voltsd as function of the
electron and hole confinement lengths for GaAs material param-
eters. Bluesredd regions correspond to more stable negativesposi-
tived trion. Above the dashed-dotted line the negative trion is un-
bound. The green line corresponds toEBsX−d=4.2 meV and the
yellow line to EBsX+d=2.9 meV.
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GaAs/AlGaAs quantum wire with a thickness of the GaAs
crescent of 3 nm at the centerd. Obviously, a more realistic
model is required to extract details of the confinement from
the experimental data.

The dependence of the size of the trion, i.e., the interpar-
ticle distance as function of the hole confinement length, is
shown in Fig. 9 forle=2.95 nm. The electron-hole distance
for the trions and the exciton have been calculated asÎkzh1

2 l,
and Îkzeh

2 l, respectively. The hole-hole distance forX+ and
the electron-electron distance forX− are determined as
Îkszh1−zh2d2l. The size of the exciton increases aslh in-
creases which is due to the reduced value of the electron-hole
interaction. Much stronger dependence onlh is observed for
X−, which becomes unbound forlh.7 nm scf. Fig. 7d. The
dependence of theX+ size on the hole confinement is non-
monotonous. The positively charged complex has the small-
est size nearlh=3 nm when it is the most strongly boundscf.
Fig. 7d. For lh= le=2.95 nm the order of the interparticle dis-
tances in the two complexes is the same as in two-
dimensional quantum wellsscompare Fig. 4 of Ref. 13d. In
spite of the fact that the probability of finding both holes in
X+ in the same position is much smaller than for electrons in
X− scf. Fig. 3d the longer tail of the electron-electron corre-
lation function results in a larger electron-electron distance
than hole-hole distance.

C. Magnetic field parallel to the wire

In the present approach it is straightforward to include a
magnetic field oriented parallel to the axis of the wire. It
simply scales down the electron and hole oscillator
lengths according to the formulalsBd=f1/l4s0d+1/lc

4g−1/4,
where lc=Î2" /eB is the magnetic field length
slc=36.28/ÎB nm ÎTd. Since lsBd for high magnetic fields
decreases tolc, the magnetic field tends to equalize the elec-
tron and hole confinement. The binding energy of the trions
can be obtained following paths offlhsBd , lesBdg in Fig. 8.
The modification of the binding energies of the trions by the

magnetic field is presented in Fig. 10 for different oscillator
lengths. In a magnetic field of 40 T,lsB=0d=4.9 nm is de-
creased to lsB=40 Td=4.4 nm and lsB=0d=6.86 nm to
lsB=40 Td=5.19 nm. Forle= lh=6.86 nmssee the red curves
in Fig. 10d the magnetic field decreases the length of con-
finement exactly as in the case presented in Fig. 5. In the
more realistic case of stronger hole confinement, i.e., for
le=6.86 nm andlh=4.9 nm ssee the black lines in Fig. 10d
the magnetic field increases the binding energy of the posi-
tive trion more strongly. This is because the magnetic field
more strongly affects the largerle value than the smaller hole
confinement lengthlh which increases the electron-hole in-
teraction more strongly than the repulsive hole-hole poten-
tial. For X− the effect of the increased electron-hole interac-
tion is nearly cancelled by the increase of the electron-
electron potential value. Near 35 T a crossing of the black
lines is observed, which corresponds to passing from the
“blue” to the “red” region in the phase diagram of Fig. 8.
This crossing is qualitatively opposite to the one obtained for
two-dimensional quantum wells,13 in which a small magnetic
field saround 1 Td increased theX− stability over theX+

binding energy. In quantum wells the magnetic-field related
increase of the single-particle energy is smaller for electrons
and holes bound in the trion complex than for the lowest
Landau level in the final state of the free electron and hole
after the trion dissociation. The crossing of the binding en-
ergies observed in quantum wires13 is therefore at least par-
tially due to the stronger dependence of the electron lowest
Landau level—note an almost linear magnetic field depen-
dence of the trion binding energies in Fig. 2 of Ref. 13. In the
present calculations the free electron and the free hole are
strongly localized in the plane perpendicular to the field and
the single-particle magnetic field effects cancel due to the
assumption of the frozen-lateral degrees of freedom, so that
the crossing is entirely due to the modified effective interpar-
ticle interactions.

In the case of stronger electron confinement
sle=4.9 nm,lh=6.86 nm—the blue lines in Fig. 10d the situ-
ation is just opposite, theX− is less strongly bound and the
magnetic field acts more strongly on the negative trion de-
creasing the binding energy difference according to the

FIG. 9. Interparticle distances for the negativessolid linesd and
positive trionssdashed linesd and for the excitonsdotted lined for
GaAs material parameters andle=2.95 nm.se-ed, se-hd, and sh-hd
stand for the electron-electron, the electron-hole and the hole-hole
distance.

FIG. 10. sColor onlined Magnetic field dependence of the trion
binding energies in GaAs for different values of the electron and
hole oscillator lengths.
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mechanism described above. However, for the electron con-
finement equal or stronger than the hole confinement, the
magnetic field does not lead to crossing of the trion energy
lines andX+ is more stable for any magnetic field.

IV. SUMMARY AND CONCLUSIONS

We studied the properties of the negative and positive
trions in quantum wires with strong lateral confinement us-
ing the approximation of the lowest subband occupancy
which allows for a numerically exact solution of the multi-
particle Schrödinger equation. We investigated the relative
stability of the positive and negative trions with respect to
the dissociation into an exciton and a free carrier for different
electron and hole confinement. We found that the order of the
negative and positive trion PL lines is interchanged when the
lateral confinement of the hole is stronger than the one for
the electron. In a GaAs quantum wire withle=5 nm we pre-
dict that whenlh is 20% smaller the positive and negative

trion recombination lines interchange. The change in the or-
der is due to modification of the effective interactions in the
trion complexes. The present results provide an explanation
for the recently experimentally observed larger stability of
the negative trion in quantum wires.11 We predict that for
largerX− stability due to stronger hole confinement the mag-
netic field oriented parallel to the axis will tend to inter-
change the order of theX+ andX− energy lines.
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