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Abstract. A possible implementation of quantum computation on quan-

tum dots is discussed. We focus on the application of the spin of the

electron confined in the quantum dot to read/write operations of quan-

tum bits (qubits). The realization of quantum logic gates is studied for

the spin states of the two-electron system confined in the two coupled

quantum dots. We also discuss the advantages and limitations of the

quantum-dot quantum computing technology.
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1. Introduction

In the last years we observe a rapid progress in the theory of quantum
computing [1, 2]. Moreover, various physical realizations of quantum compu-
tations are intensively studied. The theory of quantum computation is based
on a direct application of the laws of quantum mechanics to the computa-
tions. According to our present knowledge, quantum mechanics and quantum
electrodynamics provide a complete description of the structure and proper-
ties of the world at the microscopic scale, i.e., the objects of sizes smaller
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or comparable with sizes of molecules. In particular, the quantum theory of
atoms and elementary particles (electron, photon, etc.) describes with a high
precision the properties, which are verified in experiments.

Quantum computational algorithms consist of sequences of logic opera-
tions, which are performed on quantum states and implement the quantized
(discrete) values of basic physical quantities, like energy and angular momen-
tum. The quantum information is recorded with the help of quantum bits,
called qubits, which are the quantum states in the two-dimensional Hilbert
space. The physical realization of the qubit can be done with the use of any
two-level quantum system, i.e., the microobject characterized by the observ-
able with two discrete eigenvalues. For example, the qubit can be realized
on the two spin states of the electron or the two states of the polarization of
the photon. The qubits serve to storage quantum information. They can be
transformed with the use of quantum logic operations. In the mathematical
language, the quantum logic operations (gates) are described by the unitary
transformations between the quantum states.

Parallel to the progress in the theory of quantum computation the experi-
mental studies are recently carried out in order to find physical realizations of
qubits and to perform controlled transformations on them. Several different
physical systems are investigated in order to develop the realizable quantum
computing technology. The interesting results have been obtained for single
ions in ion traps [3], atoms and photons in quantum-electrodynamics (QED)
cavities [4], molecular systems in nuclear magnetic resonance (NMR) appa-
ratuses [5], and Cooper pairs in superconductors [6]. Particularly promising
is the application of semiconductor nanostructures, especially quantum dots,
as the quantum computing devices. The semiconductor devices possess the
advantage that the technology of their fabrication (nanotechnology) is a nat-
ural extension of the technologies used in the present computer industry and
moreover they can be easily integrated with the existing hardware.

The quantum dots are the laboratory produced solid-state structures with
nanometer sizes, in which the motion of charge carriers (electrons and holes)
is limited in all three spatial dimensions. These are the smallest structures
among the artificially fabricated objects. Their electronic properties can be
modified and controlled by the modern electronic devices. We note that the
quantum dots determine the limit of the current trend of miniaturization of
electronic devices. This trend relies on the man-made producing of the de-
vices with decreasing size. The smaller systems than quantum dots that can
be used in future electronics (molecular electronics) are natural atoms and
molecules. The quantum dots are called artificial atoms, since the confined
electrons (holes) form localized quantum states with the properties similar to
those of natural atoms. In particular, the energy levels associated with the
quantum confined states are discrete. Applying an external electromagnetic
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field, we can change – in a broad range – the electronic properties of quantum
dots. Therefore, the quantum dots are the nanostructures, which can be used
as elements of future quantum computers.

The quantum computers are nowadays at the stage of the laboratory re-
search. A different situation takes place for nanocomputers that are nowadays
introduced into the production. The basic elements of nanocomputers, i.e., a
nano-field-effect-transistor (NFET) and nano-integrated circuit (nanoIC), re-
cently reach the size below 100 nm. Therefore, quantum phenomena appear
in their operation. On the contrary to quantum computers, whose operation
just exploits quantum effects, the quantum effects in nanocomputers play
a damaging role and limit their computational efficiency. For example, the
tunnel currents spoil the isolating properties of blocking layers. The opera-
tion of nanocomputers is still based on the laws of classical physics. We also
note that some possible physical realizations of quantum computers, e.g.,
ion traps, QED cavities, and NMR systems, are of centimeter size, which
suggests that these technologies will not necessarily lead to a further minia-
turization of the future computing machines. However, it is expected that
any technology of quantum computation should lead to an enormous increase
of the computational power.

The history of the quantum computation begins with the articles of Feyn-
man [7, 8], who as the first proposed a direct application of the laws of quan-
tum mechanics to a realization of computational algorithms. We underly
that the operation of up-to-date built computers, and also nanocomputers,
can be completely described by the laws of classical physics, in particular
the Maxwell equations, which are the fundamental equations of the classical
electrodynamics. In spite of the fact that the present computers contain tran-
sistors, the operation of which is based on the electron band structure prop-
erties of semiconductors, the computations in the conventional computers
run according to the equations of classical physics. For example, in conven-
tional transistors the read/write operation of the single classical bit requires
a flow of 106 − 109 electrons. For comparison, the read/write operation of
the quantum bit can be performed with the single electron.

The fundamental ideas of quantum computing were introduced and de-
veloped in the papers [9, 10, 11, 12, 13, 14, 15]. A model for quantum compu-
tations and a description of the universal quantum computer as a quantum
Turing machine were elaborated by Deutsch [9]. Shor [10] introduced the
quantum algorithm for the integer-number factorization. Grover [11] pro-
posed the fast quantum search algorithm. Wooters and Zurek proved the
non-cloning theorem, which puts definite limits on the quantum computa-
tions. Calderbank and Shor [14] elaborated the quantum error-correcting
method. Recently, the theory of quantum computing is an advanced theory,
which links the elements of physics, mathematics, and computer science [16].
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In the present article, we discuss a possibility of application of quantum
dots to quantum computations. The article is organized as follows: in Section
2 we provide a brief introduction to the quantum computing, in Section 3 we
present basic properties of quantum dots, in Section 4 we discuss a possible
realization of qubits and quantum logic gates on two-electron spin states in
coupled quantum dots, and in Section 5 we give conclusions and summary.

2. Quantum bits and quantum logic gates

2.1. Qubits

The classical information is stored with bits, i.e., the states of the classical
system, which take on two values 0 or 1, each of which occurs with probability
0 or 1. Quantum bits (qubits) are the quantum-mechanical counterparts of
classical bits. The qubit is defined as a quantum state vector in the two-
dimensional Hilbert space H2. If vectors |0〉 and |1〉 form the orthonormal
complete basis in H2, then the qubit can be written down as

|ψ〉 = c0|0〉 + c1|1〉, (1)

where the complex probability amplitudes c0 and c1 satisfy the normalization
condition |c0|

2+|c1|
2 = 1. The set of states {|0〉, |1〉} is called a computational

basis.
The information capacity of classical and quantum bits is different. Con-

trary to the classical bit, which can be in classical state 0 or 1 with probability
1, the quantum bit takes on a continuum of values, which are determined by
the amplitudes c0 and c1. However, these amplitudes are non-measurable. If
we perform a measurement on qubit (1), we obtain either outcome 0 with
probability |c0|

2 or outcome 1 with probability |c1|
2. However, if the quan-

tum system is described by the qubit being exactly equal to one of the states
of the computational basis, i.e., |ψ〉 = |0〉 or |ψ〉 = |1〉, then we can predict
the exact result of the measurement with probability 1. This dichotomy be-
tween the non-observable general state of the qubit and the precise result of
the measurement in the basis state (eigenstate of the observable) plays an
essential role in quantum computations.

For the quantum computing, besides the single qubit states (1), we also
need two-qubit states, which are the states of the two-particle quantum sys-
tem. The two-qubit states can be constructed as tensor products of ba-
sis states {|0〉, |1〉}. Accordingly, the two-qubit basis consists of the states
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|00〉, |01〉, |10〉, |11〉, where we apply a shortened notation, e.g., |00〉 ≡ |0〉|0〉 ≡
|0〉 ⊗ |0〉. The arbitrary two-qubit state has the form

|Ψ〉 = c0|00〉 + c1|01〉 + c2|10〉 + c3|11〉 , (2)

where the normalization condition takes on the form

|c0|
2 + |c1|

2 + |c2|
2 + |c3|

2 = 1.

2.2. Spin qubits

A particle with non-zero spin is particularly suitable for the physical
realization of the qubit. The qubits can be formed from the spin states of
the single electron, single nucleus, pair of electrons, or electron-hole system
(exciton). In the present paper, we consider the particle with spin quantum
number 1/2, e.g., the electron, for which the z component of the spin takes
on the two values ±(~/2). The operator of the z spin component is

sz =
~

2
σz , (3)

where σz is the z Pauli matrix

σz =

(

1 0
0 −1

)

. (4)

The corresponding eigenequations have the forms

sz|0〉 = +
~

2
|0〉 , sz|1〉 = −

~

2
|1〉 . (5)

The eigenstates can be written in the form of spinors, i.e.,

|0〉 =

(

1
0

)

, |1〉 =

(

0
1

)

. (6)

Another physical quantity of interest is the spin magnetic dipol, which pos-
sesses the z component

µz = −
1

2
g⋆µBσz , (7)

where µB is the Bohr magneton (µB = 0.927×10−23 Am2), g⋆ is the effective
Lande factor, which in semiconducting materials can take on positive as well
as negative values, e.g., for the electron in Si g⋆ = 1.998, in Ge g⋆ = 1.563,
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and in GaAs g⋆ = −0.44. For comparison, for the electron in the vacuum
g⋆ = 2.0.

The spin can be experimentally detected using the interaction of the spin
magnetic dipol with the external magnetic field B. For B = (0, 0, B) the
Hamiltonian of this interaction has the form

Hint = −µzB =
1

2
g⋆µBσzB . (8)

If the quantum system possesses energy Eν in the absence of the external
magnetic field, then – according to (3), (5), and (8) – the interaction of
the spin magnetic dipol with the magnetic field leads to the splitting of this
energy level into the two spin sublevels with energies

Eν± = Eν ±
1

2
g⋆µBB , (9)

where sign + corresponds to state |0〉 with spin +~/2 and sign − corresponds
to state |1〉 with spin −~/2. Eq. (9) describes the spin Zeeman effect, which
can be observed by the spectroscopic methods. For example, for Si at B = 10
T the spin splitting energy is ∼0.6 meV, which corresponds to the radiation
with the wave length ∼2 mm.

2.3. Quantum logic gates

The qubits can be transformed using the quantum logic gates, which are
performed with the help of unitary transformations U , which transform initial
state |ψi〉 into final state |ψf 〉 according to

|ψf 〉 = U |ψi〉 . (10)

Depending on the type of qubit, on which they operate, we deal with either
one- or two-qubit gates. The quantum NOT gate, being a counterpart of the
classical NOT gate, defined as

UNOT ≡

(

0 1
1 0

)

, (11)

is an example of the one-qubit gate. If we write the one-qubit state (1) in a
matrix form as

|ψ〉 =

(

c0
c1

)

, (12)
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then the NOT gate operates on the one-qubit state as follows:

UNOT

(

c0
c1

)

=

(

c1
c0

)

. (13)

As a result, the basis states {|0〉, |1〉} have been interchanged, i.e., |0〉 ↔ |1〉.
The two-qubit gate operates on the two-qubit state |β1, β2〉 ≡ |β1〉|β2〉,

where β1, β2 = 0, 1. An example of the important two-qubit gate is the
controlled-NOT gate UCNOT , for which the first qubit (|β1〉) is the control
qubit and the second qubit (|β2〉) is the target qubit. The controlled-NOT
gate transforms the two-qubit basis states as follows:

UCNOT |00〉 = |00〉 , UCNOT |01〉 = |01〉 ,

UCNOT |10〉 = |11〉 , UCNOT |11〉 = |10〉 , (14)

which means that the CNOT gate changes the second qubit if and only if the
first qubit is in state |1〉.

It was shown [13] that the set of logic operations, which consists of all
the one-qubit gates and the single two-qubit gate UCNOT is universal in
the sense that all unitary transformations on N -qubit states, where N is
arbitrary, can be expressed with the help of different compositions of the
gates, which belong to the universal set of gates. Another important property
of quantum computations is a quantum paralelism, which is based on the
fact that the single unitary transformation can simultaneously operate on
all the qubits in the system. The paralelism of quantum computations is
an immanent characteristic of the quantum system; therefore, no special
technology is necessary for its implementation.

2.4. Conditions for the physical realization of quantum computing

The quantum computing technology has to satisfy the following condi-
tions: (i) the physical realizability of the qubits; (ii) the possibility of the
precise preparation of the initial qubit state; (iii) the controlled unitary evo-
lution of the qubit; (iv) the possibility of the accurate measurement of the
final qubit state. When considering a physical system chosen to perform the
quantum computations, we have to define the physical properties, which we
will exploit in computations, e.g., spin of the electron, atomic nucleus, or pho-
ton, and the physical processes for the read/write operations, e.g., radiative
transitions with the emission/absorption of photons.

The conditions listed above put certain limitations on the quantum com-
puting technology. When designing the physical apparatus, which will per-
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form the quantum computations, we face the problem of maintaining the con-
trolled unitary evolution of the quantum system until the computations are
completed. Such controlled evolution is possible provided that the quantum
system is completely isolated from the environment. However, the complete
isolation of the quantum-computing system disables the read/write opera-
tions. Therefore, some slight interaction of the quantum system with the
environment is necessary. On the other hand, this interaction leads to decay
and decoherence processes, which reduce the performance of the quantum
computer.

In the decay process, the quantum system goes over – in a very short
time – to a new state releasing a part of its energy to the environment. For
example, the change of spin state |0〉 → |1〉 is accompanied by the emission of
the photon. The decay is characterized by the decay time (relaxation time),
which for the spin states can be very long. The recent measurements [17] of
the Zeeman splitted spin states in quantum dots give a lower bound of 50 µs
on the relaxation time at B = 7.5 T.

A decoherence is the much subtler effect, in which the energy is conserved
but the relative phase of the different basis states of the qubit is changed. As
a result of decoherence the qubit changes as follows:

|ψ〉 → c0|0〉 + eiθc1|1〉 , (15)

where the real number θ denotes the relative phase. The appearance of the
non-zero relative phase results from the coupling of the quantum system
with the environment and can lead to essential changes in the measurement
statistics. For example, the quantum-mechanical expectation value of the
measured quantity is changed. The decoherence time tdecoh is usually much
shorter than the decay time; therefore, the decoherence can be treated as
the most detrimental effect for the quantum computations. The ratio of the
decoherence time tdecoh to the elementary operation time toper, i.e.,

R =
tdecoh

toper

, (16)

is an approximate measure of the number of computation steps performed
before the coupling with the environment destroys the qubit. For differ-
ent quantum-computing technologies this ratio changes in broad limits [19]:
103 ≤ R ≤ 1013. For example, R = 103 for the electron states in quantum
dots, R = 107 for nuclear spin states, and R = 1013 for trapped ions.
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3. Quantum dots

A semiconductor quantum dot [20] is the nanostructure, the linear size
of which does not exceed 1 µm in each spatial direction. The typical sizes of
the quantum dots are between ∼10 nm and ∼100 nm. The potential created
in the quantum-dot nanodevice limits the charge carrier motion in all the
three dimensions. This confinement potential possesses the range comparable
with the size of the quantum dot and the finite depth. The typical depth
of the confinement potential, i.e., the electron potential energy minimum
measured with respect to the conduction band bottom of the embedding
material, is of the order of ∼0.1 eV to ∼1 eV. This leads to the energy
separations between the one-electron energy levels of the order of few meV.
These energy separations put an additional limitation on the realizability of
quantum computations, namely, in order to avoid thermal excitations, we
have to maintain the temperature of the nanodevice below 1 K.

There are many types of quantum dots, among which, the best candidates
for the possible implementation of quantum logic gates are the electrostatic
(gate controlled) quantum dots. The electrostatic quantum dot [21, 22] con-
sists of the sequence of vertically stacked layers, which form single or multiple
potential wells and barriers. The source and drain electrodes are located at
the bottom and top sides of the layer sequence. The entire quantum-dot nan-
odevice usually possesses a cylindrical symmetry and can have either a form
of an etched pillar [23] or a layer sequence with a metal cap [24]. Depending
on the number of barrier layers, the nanodevice can contain either a single
or multiple quantum dot. In the pillar-shape quantum-dot nanodevice [23],
an additional gate electrode is placed at the cylinder side, which increases
the ability of tuning of the electrostatic field in the quantum dot. In the
electrostatic quantum dot [21, 22], the confinement potential results from
both the conduction band offsets and the external electrostatic field created
by the electrodes. The knowledge of this potential is important for studying
and modelling the electronic properties of the quantum dot. The confine-
ment potential cannot be directly measured, but can be calculated from the
first principles of electrostatics by solving the Poisson equation for the entire
nanostructure. Such calculations were performed [21, 22] for the two differ-
ent types of the electrostatic quantum dots. These were the pillar-shaped
quantum dots of Tarucha et al. [23] and capped quantum dots of Ashoori et
al. [24] The results obtained [22] show that the confinement potential V can
be parametrized by either the Gaussian function [25] or power-exponential
function [26] of the form

V = −V0 exp[−(r/R)p − (|z|/Z)p] , (17)
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where V0 > 0 is the depth of the potential well, r =
√

x2 + y2, p > 1, R
and Z are the measures of the confinement potential range in the lateral
directions x, y and vertical direction z, respectively. For p = 2 we obtain the
Gaussian potential and for p > 10 the shape of the confinement potential
resembles the rectangular potential well.

Electrons confined in the quantum dot form localized bound states with
discrete energy levels. These states exhibit a qualitative similarity to the
quantum states of natural atoms. Therefore, the quantum dots are some-
times called artificial atoms. The two quantum dots, which are coupled by
the tunnel barrier, form an artificial molecule. From the point of view of
a possible application to quantum computation, the single-electron trans-
port via the quantum dot is of crucial importance. The main single-electron
transport channel is the sequential tunneling, in which the single electrons
tunnel through the dot in subsequent time intervals provided the transport
conditions are fulfilled [27]. The single-electron transport measurements ap-
peared to be the successful spectroscopic method, which allowed to discover
the wonderful properties of quantum dots: the filling of the shells of artificial
atoms [23] and the quantum Coulomb blockade [28]. The quantitative theo-
retical description of these effects was given in paper [21]. The vertical gated
quantum-dot nanodevice [23] is a prototype of a single-electron transistor,
which can be switched on and off by the flow of the single electron. In fu-
ture, the application of single-electron transistors will lead to a much higher
performance of electronic devices at greatly reduced power consumption.

Recently, the possibility of implementation of quantum dots to quantum
computation is intensively studied [17, 18]. The qubits can be realized as
either the charge states or spin states of the quantum dots. The electro-
static quantum dots seem to be especially well suited to perform the quan-
tum computations, since their electronic properties can be modelled by the
proper choice of the nanostructure parameters and tuned by changing the
external voltages applied to the electrodes. This enables both to obtain
the designed properties of the quantum states (quantum engineering) and
perform the controlled logic operations on these states. Moreover, the mod-
ern nanotechnology of fabrication of quantum dots is an extension toward
a smaller feature size of the well known semiconductor MOSFET technol-
ogy. Therefore, its introduction into the production is more easy than those
of the other quantum-computing technologies, based on ion traps and QED
cavities, which are obtained only in advanced laboratories.
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4. Model of implementation of qubits and logic gates with

quantum dots

In quantum dots, the qubits can be formed from the quantum states of
electrons or excitons. The exciton is the bound electron-hole system, which
is created in the absorption of the photon with energy comparable with the
forbidden energy gap of the semiconductor. After the lifetime of the order
of microseconds, the exciton recombinates with the emission of the photon.
The excitonic qubit can be realized in a simple manner: we ascribe state
|1〉 to the existing exciton in the ground state and state |0〉 to the system
after recombination, i.e., an empty conduction band, a fully filled valence
band, and a photon. This concept has a disadvantage of the short decay
time (lifetime) of the exciton. However, it has the important advantage of
the easy performance of the read/write operations with the help of visible
light photons in emission/absorption processes. A possible implementation
of biexcitons (bound two-exciton systems) as the qubits has also been studied
[29].

Nowadays, it seems that the most promising for quantum computation
is the application of the spin states of quantum-dot confined electrons. The
electron spin states possess the following advantages: very long relaxation
time [17] in the absence of external fields, fairly long decoherence time (the
experiments [30] suggest tdecoh ≃ 1µs), and the possibility of easy manipu-
lation of the spin by the external magnetic field. The research toward the
implementation of the electron spin as a new information carrier is the sub-
ject of a new electronics based on spin, called spintronics [32, 33]. Recently,
the spin transistor has been designed [34, 35]. We can use the electron spin
states to construct qubits and logic operations on them in two ways, ei-
ther directly with the application of the spin magnetic dipol coupling with
the magnetic field (cf. Subsection 2.2) or indirectly with the application of
symmetry properties of the many-electron wave function. The indirect ap-
plication of spin to represent the qubit is based on the change of the sign of
the wave function during the exchange of the space-spin coordinates of two
electrons. This fundamental quantum-statistical property leads to the well
defined symmetry of the spin states in a subspace of states with the definite
spin. For example, in the two-electron system, the spin singlet state (anti-
symmetric against the spin exchange) possesses a different (usually lower)
energy than the spin triplet states (symmetric with respect to the spin ex-
change). The resulting singlet-triplet energy level splitting can be used to
distinguish the spin qubits and to perform logic operations on them, e.g.,
with the use of photon emission and absorption.
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In the present section, we discuss a modification of the proposition [19]
of an implementation of spin states of electrons confined in coupled quantum
dots in a quantum computation. In this case, the computational basis is
formed from the eigenstates of the z component of the electron spin (cf.
Subsection 2.2). Due to the universal character of the controlled NOT gate
we will discuss its realization with the use of the two coupled quantum dots.
The operation of the CNOT gate is defined by Eq. (14).

Let us consider the two-electron system in the two coupled quantum dots
labelled by index j = 1, 2. We assume that the single electron is confined in
each dot. If the quantum dots are fabricated from the different materials, the
effective Lande factors are different, i.e., g⋆

1
6= g⋆

2
. According to Eq. (9), this

leads to the different Zeeman energy of the electron in each dot. The similar
effect can be achieved by applying the inhomogeneous magnetic field, which
takes on the different value in each of the dots. The material composition
and the thickness of the barrier layer, which separates the quantum dots, is
chosen so that a small coupling between the dots is ensured. The Hamiltonian
of the system considered has the form

H = H1 +H2 +Hint , (18)

where Hj (j = 1, 2) is the one-particle Hamiltonian of the electron with spin
sz,j in the external magnetic field, i.e.,

Hj = ωjsz,j , (19)

where ωj = g⋆
jµBBj/~ [cf. Eq. (8)] and the magnetic field in the jth quantum

dot is given by Bj = (0, 0, Bj). The interaction Hamiltonian has the form

Hint = (4/~)Ωsz,1sz,2 , (20)

where parameter Ω characterizes the coupling between the electron spins in
different quantum dots. The spin operators sz,1 fulfill the eigenequations

sz,1|0, l〉 = +
~

2
|0, l〉 , sz,1|1, l〉 = −

~

2
|1, l〉 , (21)

where |k, l〉 are the two-spin states (|k, l〉 = |k〉 ⊗ |l〉) and k, l = 0, 1. The
similar two equations are satisfied for the operators sz,2. According to the
above assumptions ω1 6= ω2.

In the absence of coupling, i.e., for Ω = 0, Hamiltonian (18) possesses the
following eigenvalues: ǫ1 = −(~/2)(ω1 +ω2) in state |1, 1〉, ǫ2 = −(~/2)(ω1 −
ω2) in state |1, 0〉, ǫ3 = (~/2)(ω1 −ω2) in state |0, 1〉, and ǫ4 = (~/2)(ω1 +ω2)
in state |0, 0〉. The coupling can be switched off by applying the barrier
layer with sufficiently large thickness. Each spin state can be selectively
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addressed in processes of absorption or emission of photons with the proper
frequency. For example, in the absorption process, the photon with frequency
ω1 operates exclusively on the first qubit changing it from state |1, l〉 (spin-
down state) into state |0, l〉 (spin-up state). The reverse process, i.e., |0, l〉 →
|1, l〉, is also possible in the stimulated emission. These processes occur for
each l = 0, 1, i.e., for an arbitrary state of the second qubit. Similarly, the
photon with frequency ω2 will change the state of the second qubit only.

The case of the coupling switched on (Ω > 0) can be described using
the solutions to the eigenproblem of Hamiltonian (18). It appears that the
two-spin basis states

{|1, 1〉, |1, 0〉, |0, 1〉, |0, 0〉} (22)

are the eigenstates of Hamiltonian (18) to the eigenvalues E1 = ǫ1 + ~Ω,
E2 = ǫ2 − ~Ω, E3 = ǫ3 − ~Ω, E4 = ǫ4 + ~Ω, respectively. This means that
after switching on the interdot coupling the energy levels are changed by
±~Ω, while the eigenstates remain unchanged. This enables us to realize the
selected transitions between the basis states (22). The resonant radiation
with accurately chosen frequency causes the switching on and off between
basis states (22) associated with the change of one qubit depending on the
state of the second qubit. For example, the photon with frequency ω2 −
2Ω induces the switching between states |1, 0〉 and |1, 1〉 only, leaving states
|0, 0〉 and |0, 1〉 unchanged. Therefore, in the stimulated emission/absorption
processes induced by this photon, we can implement the CNOT operation.

This proposition of the implementation of the CNOT logic gate is based
on a simplified model of interaction between the spins. On the other hand,
interaction Hamiltonian (20) possesses the form of the Heisenberg Hamilto-
nian, which is an universal Hamiltonian of interaction between particles with
spin. The Heisenberg Hamiltonian can be used to a description of the inter-
action between different physical objects with non-zero spin, e.g., electrons,
ions, and atomic nuclei. The model of the CNOT gate, discussed above, can
be realized in the coupled quantum dots as well as in the NMR system.

We note that the other methods are also studied for the implementation
of spin qubits in quantum dots [32]. They include: (i) a measurement of
spin via the measurement of charge, (ii) a measurement of a spontaneous
magnetisation of the quantum dot, (iii) electron spin resonance, and (iv) a
measurement of singlet-triplet splitting with the help of a Faraday rotation.
Method (i) employs the spin filter, which generates a current of spin polarized
electrons through a semiconductor. Recently, a very interesting realization of
qubits on quantum dots has been experimentally studied [36] with the direct
use of the electron charge. The authors [36] succeeded in forming the qubits
in the coupled quantum dots as the states with the presence or absence of
the single electron in the first or the second dot. This achievement is very
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promising since it enables us to construct the qubits by charging the quantum
dot and detect them by measuring the electric charge.

5. Conclusions and summary

The present stage of research toward a construction of a quantum com-
puter can be characterized as follows: the theory of quantum computation,
based on the solid foundations of quantum mechanics, is very advanced, while
the practical realization of the quantum computation, although being a sub-
ject of intensive experimental studies in physical laboratories, is in an emerg-
ing stage. The quantum computing theory comprises the elements of quan-
tum physics, mathematics, and information theory. This theory shows that it
is possible to apply directly the quantum effects to a superdense information
storage and massively parallel computing with a very high speed. Nowadays,
we face the problem of the physical realization of the quantum computer. Be-
sides the quantum-dot quantum computer, treated in the present article, the
different competitive technologies are intensively studied. The most promis-
ing of them are ion traps, QED cavities, NMR systems, and superconducting
systems.

The spin of quantum particles (electron, atomic nucleus, photon) is es-
pecially suitable to construct of and operate with the qubits. In the field of
semiconductor physics and electronics, the application of electron spin as an
information carrier has led to an emergence of spin electronics (spintronics)
[32, 33]. On the other hand, the miniaturization of semiconductor devices
resulted in a development of nanoelectronics. In the nanoelectronic devices,
the charge of single electrons is used to carry on and transform the informa-
tion. The quantum dots are very important nanostructures from the point of
view of both the spintronics and nanoelectronics. They possess the important
advantage, namely, the possibility of tuning and controlling their electronic
properties by changing the external electromagnetic fields. This allows us
to obtain the required characteristics and modify them in a very short time.
It seems that – due to their flexibility – the quantum dots are promising
candidates as elements of future quantum computers. The other important
characteristics of quantum-dot nanodevices is their compatibility with the
existing hardware. It is important for the emerging quantum technology
that the construction of the spin- and nanoelectronic devices is based on the
progress in the existing electronics and the present semiconductor industry.
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In summary, nowadays we have at disposal the advanced quantum com-
putation theory. However, the physical implementation of quantum compu-
tation is in the stage of laboratory studies. The electron spin states in the
coupled quantum dots, discussed in the present paper, are good candidates
for the qubits. Moreover, the quantum logic gates can be implemented with
these states.
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[20] Jacak L., Hawrylak P., and Wójs A.; Quantum Dots, Springer-Verlag, Berlin
1998.

[21] Bednarek S., Szafran B., Adamowski J.; Phys. Rev. B, 64, 2001, 195303.

[22] Bednarek S., Szafran B., Lis K., Adamowski J.; Phys. Rev. B, 68, 2003, p.
155333.

[23] Tarucha S., Austing D.G., Honda T., van der Hage R.J., Kouwenhoven L.P.;
Phys. Rev. Lett., 77, 1996, p. 3613.

[24] Ashoori R.C., Stormer H.L., Weiner J.S., Pfeiffer L.N., Baldwin K.W., West
K.W.; Phys. Rev. Lett., 71, 1993, p. 613.

[25] Adamowski J., Sobkowicz M., Szafran B., Bednarek S.; Phys. Rev. B, 62, 2000,
p. 4234.

[26] Ciurla M., Adamowski J., Szafran B., Bednarek S.; Physica E, 15, 2002, p. 261.

[27] Adamowski J., Bednarek S., Szafran B.; Acta Phys. Polon. A, 100, 2001, p.
145.

[28] Kouwenhoven L.P., Oosterkamp T.H., Danoesastro M.W.S., Eto M., Austing
D.G., Honda T., Tarucha S.; Science, 278, 1997, p. 1788.

[29] Gywat O., Burkard G., Loss D.; cond-mat/0109223.

[30] Kikkawa J.M., Awschalom D.D.; Phys. Rev. Lett., 80, 1998, p. 4313.



111

[31] Loss D., and DiVincenzo D.P.; Phys. Rev. A, 57, 1998, 120.

[32] Awschalom D.D., Loss D., Samarth N., (eds.); Semiconductor Spintronics and
Quantum Computation, Springer-Verlag, Berlin 2002.

[33] Wolf S.A., Chtchelkanova A.Y., Treger D.M.; Spintronics – Spin-Based Elec-
tronics, in: W.A. Goddard III, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate,
(eds.), Handbook of Nanoscience, Engineering, and Technology, CRC Press,
Boca Raton 2003.

[34] Kane B.; Nature, 393, 1998, p. 133.

[35] Vrijen R., Yablonovitch E., Wang K., Jiang H.W., Balandin A., Roychowdhury
V., Mor T., and DiVincenzo D.P.; Phys. Rev. A, 62, 2000, p. 012306.

[36] Buehler T.M., Reilly D.J., Brenner R., Hamilton A.R., Dzurak A.S., and Clark

R.G.; Applied Physics Letters, 82, 2003, p. 577.

Received February 24, 2004


