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An electron wave packet formed in a semiconductor heterostructure containing a quantum well covered by
a metal surface is considered. It is demonstrated that the potential of the charge induced by the electron wave
packet on the conducting surface possesses a component of lateral confinement stabilizing its shape. The
existence of electron solitons, i.e., running electron wave packets propagating without changing their shape, is
demonstrated. In the scattering phenomena, the electron interacting with the induced charge tends to behave
like a classical particle with the backscattering probability approaching a step dependence on the incident
momentum as the distance from the metal surface is decreased. This effect enhances the ballistic character of
transport for fast electrons and facilitates the trapping of slowly moving electrons.
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In nonlinear media, in which the nonlinearity compen-
sates for the dispersion, solitary waves �solitons�, i.e., wave
packets propagating without changing their shape, can be
formed. Such waves are encountered in conducting
polymers,1 in optical fibers,2 on the water surface,3 in photo-
refractive crystals,4 and in many other systems. The disper-
sion is intrinsically present in the kinematics of a free quan-
tum wave packet, formed as a superposition of plane waves
�momentum eigenfunctions�, leading to spreading of the
packet in time. In this paper we show that the interaction of
an electron wave packet with a metal surface introduces the
nonlinearity necessary to stabilize its shape. Due to the inter-
action, the wave packet acquires solitonic properties.

The electric field generated by a classical charge in a
proximity of a grounded conducting metal plate redistributes
the charge in the conductor, leading to an appearance of an
induced surface charge. The induced charge is a source of an
additional potential attracting the original charge to the con-
ductor. A similar effect is present also in the quantum prob-
lem. Its influence on the energy spectra was addressed in the
literature on electrostatic quantum dots,5–9 in which the dot-
confined electron system interacts with the metal gates low-
ering its energy. The problem of the potential induced by an
external charge in the two-dimensional electron gas �2DEG�
confined in the inversion layer in a metal-insulator semicon-
ductor structure10,11 was considered a few decades ago. The
observation of single-electron aspects of such phenomena re-
quires very low temperatures and structures fabricated with a
monolayer precision so such observations have only been
realized relatively recently,12 opening prospects for realiza-
tion of the single-electron and spintronic devices. The soli-
tonic behavior of the electron wave packets moving in semi-
conductor quantum wires covered by metal plates was
demonstrated by Yano and Ferry.13 In this paper we recon-
sider the effects related to the induced potential and demon-
strate a self-trapping mechanism in which the electron soli-
tons can be formed and travel, even without the additional
quantum wire confinement potential.

In this paper we consider a planar nanostructure covered
by a homogeneous metal surface instead of locally defined
split gates used in electrostatic quantum dots.14 The consid-

ered structure �sketched in Fig. 1�a�� is formed by layers of
metal, insulator or semiconducting blocking layer �for in-
stance AlGaAs�, and a semiconducting quantum well �for
instance, made of GaAs�. If we assume that the metal is a
perfect conductor and neglect quantum effects in the conduc-
tor, the problem of the potential distribution can be solved by
the method of images.

For a thin quantum well, the movement of an electron
wave packet can be described in the transverse directions
�x ,y�, in which the electron is free to move. The packet
��x ,y� formed in the quantum well will find itself in a field
of the induced potential given by

V�r� =
e

4���0
� dx�dy�

��x�,y��
��x − x��2 + �y − y��2 + 4d2

, �1�

where e is the electron charge, d is the distance of the quan-
tum well from the metal plate, � is the dielectric constant of
the medium, and ��r� is the mirror reflection of the packets
electron density ���x ,y��2 �see Fig. 1�a��. The induced elec-
tric field contains not only a component attracting the elec-
tron to the metal surface but also a component of the lateral
confinement oriented to the center of the image charge dis-
tribution placed above the center of mass of the original elec-
tron wave packet. Therefore, the parallel component of the
force acting on the wave packet due to the induced electric
field is oriented exactly to the center of the packet’s charge
distribution.

In the quantum approach the induced potential is calcu-
lated as a response of the perturbed medium �the electron gas
near the conductor surface� to the external perturbation. The
response of the Fermi sea in the metal to an external point-
charge electron was considered in Ref. 15 with the linear
response theory in the random-phase approximation. It was
found15 that the response potential becomes indistinguishable
from the image charge potential at distances from the metal
surface that are much larger than the potential screening
length in the metal. The applicability of the image-charge
method is therefore well justified in the present problem, in
which the electron is separated from the metal by at least 5
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nm and the induced potential is also calculated at the same
distance. To discuss the response to a diffuse charge, we
consider the 2DEG confined in a semiconductor quantum
well and its perturbation due to the Coulomb potential of a
single electron localized in a nearby, shallower quantum well
�see Fig. 1�b��. Note that the model structure itself can be
experimentally realized. We assume that the bottom of the
deeper quantum well �QW0� is deep enough below the Fermi
level to allow the 2DEG formation, and that the bottom of
the shallower well �QWd�, containing a single electron, lies
above the Fermi level. The wells are separated by the
GaAlAs tunnel barrier. We neglect the small variations of the
effective mass and dielectric constant in the heterostructure
and use the GaAs parameters m=0.067m0 and �=12.4. We
assume that the 2DEG is strictly localized at z=0 plane and
that the single electron in the QWd is localized strictly at z
=d. Let the single-electron wave function in the transverse
direction be given by a Gaussian

��r� = ��l2�−1/4exp�−
x2 + y2

2l2 	 . �2�

The potential V0
ext generated by the electron in QWd is felt by

the 2DEG in QW0 as an external potential. The Fourier
transform of the potential at z=0 is given by

V0
ext�k� = − e�d�k�Vc�k,d� , �3�

being a product of the Fourier transform of the electron den-
sity in state �2� �d�k�=exp� −k2l2

4
� and the Fourier transform of

the Coulomb potential �shifted by d in the z direction�

Vc�k,d� =
e

4���0
� dxdy

exp�i�kxx + kyy��
�x2 + y2 + d2

=
e

4���0

2�

k
exp�− kd� . �4�

Linear response of the 2DEG in QW0 on potential �3� yields
the induced potential, which in QWd is given by the expres-
sion

Vd
ind�k� =

�0�k��Vc�k,d��2�d�k�
1 − �0�k�Vc�k,0�

. �5�

We calculate the static density response function of the
2DEG �as in Refs. 10, 11, and 16� obtaining �0�k�=
−me /��2, which yields

Vd
ind�k� =

e

4���0

2�

k

exp�− k2l2/4 − kd�
1 + �k/4m

. �6�

The induced potential in the real space is calculated through
an inverse Fourier transform. The comparison of the induced
potential calculated by the linear response method and the
potential calculated as due to the image charge is given in
Fig. 2. The difference between the potentials increases with
decreasing spread of the Gaussian, but is small even for the
strong localization, which supports the applicability of the
image-charge method employed in the present paper. In gen-
eral, each calculation performed on the ground of the quan-
tum mechanics reducing the many-body problem to the

FIG. 1. �a� Schematics of the
considered structure, the wave
packet, and its image. The solid
vector shows the packet velocity,
and the dashed vectors indicate
the forces acting on the electron
in the front and the tail of the
wave packet. �b� The model
structure used for the discussion
of the linear response theory of
the induced potential.

FIG. 2. �Color online� Potential energies in the real space as
calculated from the linear response theory �solid lines� calculated
for the model sketched in Fig. 1�b� and the potential of the image
charge �dashed lines� for various localization lengths l of the elec-
tron wave function �cf. Eq. �2��. Donor Bohr radius aD=�2� /me2

=9.8 nm is used as the length unit and the donor Rydberg RD

=me4 /2�2�2=5.93 meV as the energy unit, with the distance be-
tween the quantum wells d=aD.
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single-electron approximation must inevitably produce an in-
duced potential as a response to the electron-density distri-
bution, i.e., to the square of the modulus of the wave func-
tion.

Due to its interaction with the conductor, the electron
wave packet becomes self-trapped. The shape of the stable
wave packet can be determined by a solution of an
eigenequation of the Hamiltonian for an electron in the field
of the induced potential

H = −
�2

2m
� �2

�x2 +
�2

�y2	 − eV�r� . �7�

Since the induced potential �1� depends on the eigenfunction
of the Hamiltonian �7� the calculations are performed self-
consistently. The wave function of the self-trapped electron
has a shape very close to Gaussian. Figure 3 presents a com-
parison of the stable packet wave function with its Gaussian
approximation at d equal to GaAs donor Bohr radius aD
=9.8 nm. The self-trapping potential and the parallel compo-
nent of the electric field for which the self-consistency is
reached are plotted in Fig. 3 with red and blue lines, respec-
tively.

The value of l parameter for which the packet is stable
depends on the quantum well-conductor distance d. It turns
out that the radius of the stable wave packet is comparable to
d and depends on it nearly linearly. In Fig. 4 we also present
the dependence of the eigenvalue of Hamiltonian �7� on d
�dashed line�. Note that the eigenvalue of Eq. �7� is not equal
to the total energy of the system. Instead, it has the same
interpretation as the single-electron energy in the mean-field
calculations. The total energy of the system is obtained by
subtracting half of the interaction energy from the eigenvalue
�similar to the mean-field calculations�; see dotted line in
Fig. 4.

The solution of the time-dependent Schrödinger equation
for the stable wave packet �s taken as an initial condition is
simply ��r , t�=�s�r�exp�−iEt /�� �E is the eigenvalue of
Hamiltonian �7�� and corresponds to a stationary electron
density �see Fig. 5�a��. For comparison, the solution of the

time-dependent Schrödinger equation for the same initial
condition but with neglected image-charge effect is shown in
Fig. 5�b�. In Fig. 5�c� the account17 is taken for the interac-
tion but the initial condition is set as a Gaussian with the
value of the l parameter decreased by 10% from 3.61aD �op-
timal fit value for d=aD; see Fig. 3� to 3.21aD. The wave
packet is not stationary, but the self-trapping mechanism pre-
vents it from spreading.

Let us now consider a propagating wave packet. The sta-
tionary wave packet is set in motion for the initial condition
taken as the stable wave packet �s multiplied by a plane
wave

��r,0� = �s�r�exp�ikx� . �8�

The wave packet moving parallel to the metal surface with a
certain low velocity is accompanied by a moving induced

FIG. 3. �Color online� The ground-state eigenfunction of Hamil-
tonian �7� �dots� and its Gaussian approximation �solid black line�
for quantum well-conductor distance d equal to GaAs donor Bohr
radius for y=0. The red line shows the potential energy of an elec-
tron in the induced potential �1� and the blue line, the x component
of the induced electric field.

FIG. 4. The radius of the stable wave packet l �solid line, right
scale� as a function of the quantum well to conductor distance d.
The ground-state eigenvalue of Hamiltonian �7� is plotted with a
dashed line and the total energy with a dotted line, both referred to
the left axis.

FIG. 5. Electron densities given by the time-dependent
Schrödinger equation for d=aD at y=0. The stable wave packet was
taken as the initial condition �Eq. �8�� for �a� and �b�. In �a� the
interaction of the image was accounted for and in �b� it was ne-
glected. Plot �c� shows the time dependence of the electron density
for a Gaussian wave packet with l=3.21 �see Eq. �3��, i.e., de-
creased by 10% from the optimal fit to the stable wave packet.
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charge �moving image�. For a perfect conductor the redistri-
bution of the induced charge is fast and nondissipative. Note
that the force acting on the front of the wave packet has an
antiparallel �retarding� component to the wave-packet veloc-
ity �cf. Figs. 1�a� and 3� and that the force on the tail of the
wave packet has a parallel �accelerating� component to the
velocity of the packet. The forces acting on the front and the
tail of the wave packet prevent it from spreading when it
moves. We have found by numerical simulations for the ini-
tial condition �8� that the charge density of the packet mov-
ing along the x axis with velocity V=qk /m is unchanged in
time. Actually, it can be shown that the stationary and run-
ning solitons are related via the Lorentz transformation in the
nonrelativistic limit. It is found that the wave function
evolves in time according to

��r,t� = �s�x − Vt,y�exp�ikx −
i�E + mV2

2 �t

q
	 . �9�

The self-focusing mechanism has a crucial influence on
the scattering properties of a moving electron. We considered
an electron confined in a wire placed underneath a metal
plate. The electron tunnels through a barrier formed by a
distant Coulomb defect of a charged acceptor placed at a
distance of w=5ad from the wire �the maximum of the po-
tential of the impurity 1/�x2+w2 is equal to 0.4RD�. We as-
sume a negligible width of the wire, reducing the problem to
strictly one dimensional and neglect the image charge of the
acceptor. For the initial condition we took the electron eigen-
state calculated in the absence of the Coulomb defect for d
=ad multiplied by a plane wave �Eq. �8��. Figures 6�a� and
6�b� show the results for the kinetic energy of the progressive
movement of k2 /2m=0.27RD for an electron noninteracting
�a� and interacting �b� with the metal plate. A larger part of
the free wave packet �Fig. 6�a�� is reflected, but in the soliton
packet of Fig. 6�b� the tunneling through the impurity poten-
tial barrier is totally suppressed. On the other hand, for
higher k, the entire soliton packet is transferred through the
barrier �see Fig. 6�c� for q2k2 /2m=0.7RD�. The transfer
probability is plotted in function of the kinetic energy in Fig.
7 for d=ad, 2ad and � �free wave packet�. We notice that
with the decreasing wire-metal plate distance the dependence
becomes more stepwise. In the scattering phenomena, the

electron interacting with the induced charge tends to behave
like a classical particle. This effect can essentially facilitate
the electron control in the single-electron devices. In the
presence of a metal plate, slowly moving electrons will be
trapped more easily in local potential cavities and the trans-
port of electrons traveling with larger velocities will have
more ballistic character. The presented effect of the induced-
charge-assisted ballistic transport indicates that the experi-
mental verification of the solitonic electron behavior can be
performed in the conductance measurements.

Due to a relatively small binding energy the soliton can
possibly be observed only in low temperatures. For a
GaAs/AlGaAs nanostructure the soliton binding energy at
d=20 nm is about −0.1 meV. The soliton will be destroyed
by thermal excitations above 1 K. Nevertheless, in tempera-
tures in which the electrostatic quantum dots are studied,14

the soliton effect should be observable. More favorable con-
ditions for the soliton observation are expected to be found
in structures based on semiconductors with larger effective
masses and smaller dielectric constants.

We have shown that an electron in a semiconductor nano-
structure under a metal surface can travel in form of a wave

FIG. 6. Time evolution of the electron wave
packet moving along a quantum wire and scatter-
ing on the potential barrier of a charged acceptor
placed at a distance of 5ad from the wire. Con-
tours show the electron wave packet and the
shape of the acceptor potential barrier is marked
by shades of gray. In �a� and �b� the kinetic en-
ergy of progressive movement q2k2 /2m is set to
0.27 and in �c� to 0.7 RD. In �b� and �c� the me-
tallic plate-wire distance is d=ad, and in �a� the
metal plate, it is absent.

FIG. 7. Transfer probability as function of the kinetic energy of
the incident electron wave packet for the potential barrier of a
distance-charged acceptor �see Fig. 5�. Solid, dotted, and dashed
curves correspond to the metal surface at d=ad, 2ad, and �,
respectively.
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packet of a stable shape having all the characteristics of a
soliton. Formation of solitons can essentially change the low-
temperature behavior of carriers close to electrodes deposited
on the nanostructure. In particular this effect will influence
the transport and scaterring properties of the carriers, their
capacity of passing through obstacles �tunneling through bar-
riers and potential wells� affecting the effective resistance.

The self-trapping mechanism should facilitate the control of
carriers in single-electron devices, which can be useful for
designing the quantum gates as well as in spintronic appli-
cations.
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