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We study a possible physical realization of a quantum controlled-NOT gate with the use of two weakly
coupled asymmetric quantum dots. Solving the time-dependent Schrödinger equation for the model two-
electron system, we simulate the infrared-radiation-induced quantum transitions that correspond to basic gate
operations. We require the transition probabilities to be close to 1 and optimize the parameters of the nano-
structure in order to make the gate operation time as short as possible. In the simulations, we have taken into
account the entire energy spectrum, which can be populated by the absorption or emission of the infrared
radiation. We discuss the consequences of the existence of many bound two-electron states on the probability
of radiative transitions.
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I. INTRODUCTION

In recent papers, one can find many theoretical proposals
for the implementation of quantum dotssQDsd f1g in quan-
tum computationf2–15g. These proposals consist in applica-
tion of either the orbital or spin states of electrons confined
in the QDs. The orbital states of electrons in the coupled
QDs were proposed for a possible realization of a quantum
controlled-NOT sCNOTd gatef2,5,7,9g. Spin states of coupled
QDs are intensively studiedf3,4,6,12g as possible candidates
for qubits and quantum logic gates due to the long relaxation
time of Zeeman-split states in an external magnetic field
f16g. Performing a direct measurement, Hansonet al. f16g
demonstrated that the relaxation time of the spin states of the
QD-confined electrons is sufficiently long to use these states
as qubits in quantum computation. Hayashiet al. f18g re-
ported the coherent manipulation of spin qubits in laterally
coupled QDs. The large number of theoretical papers on
quantum computation with QDs, e.g.,f2–4,6–13,15g, is in
contrast with the small number of experimental studies, e.g.,
f16–18g. The discrepancy between the numbers of theoretical
and experimental papers mainly results from the decoherence
problemf19g. In order to use the qubits as efficient informa-
tion carriers and to perform a unitary time evolution of them
we have to maintain the coherent quantum states for a time
that exceeds by many orders of magnitude the quantum gate
operation time. This requirement is very difficult to satisfy in
solid-state devices.

The present work is an attempt to fill the gap between the
existing theoretical treatments and experiment. For a system
of coupled QDs we perform a direct numerical simulation of
the quantum gate operation. We apply a theoretical model
that possibly well reproduces the properties of the real nano-
structure. In this model we can keep the coherent qubit states
for an arbitrary long time and perform the unitary evolution
of the qubits. We focus on the two-qubitCNOT gate, which
together with all the one-qubit gates, constitutes a universal
set of quantum logic gatesf20g. For the purpose of imple-

mentation of the gate we have to find a physical realizations
of the states of a computational basis and a unitary operator,
which performs theCNOT logic gate. In the present model,
the computational basis is composed from the four selected
eigenstates of two electrons confined in two asymmetric
QDs. TheCNOT operation is realized with the help of an
infrared radiation pulse with a proper duration time.

The implementation of theCNOT gate on the basis of
coupled QDs was first proposed by Barencoet al. f2g, who
considered two symmetric QDs, in which the asymmetry was
generated by an external electric field. The application of
coupled asymmetric QDs to realize aCNOT gate was studied
by Balandin and Wangf5g, Sanderset al. f9g, and Tanamoto
f7g. In the papersf5,7,9g a one-dimensional model nanostruc-
ture is employed and the interaction between the electrons in
different QDs is taken on in a simplified form as the dipole-
dipole interactionf5,9g. Moreover, the authorsf5,7,9g take
into account only the lowest-energy states. In the present
paper, we extend the modelf2,5,9g to a three-dimensional
nanostructure and take into account all the two-electron
states with discrete energy levels in the energy interval of
interest. We calculate the gate operation time, which is of
crucial importance for the possible physical realization of
QD-based quantum computation, and compare this time with
the coherence timef19g.

The paper is organized as follows: We present the theo-
retical model in Sec. II and the results of simulations in Sec.
III, Sec. IV contains a discussion, and Sec. V conclusions
and a summary.

II. THEORETICAL MODEL

We consider two electrons confined in two coupled asym-
metric QDs. The barrier separating the QDs is taken to be
sufficiently wide so that the tunneling of electrons between
the individual QDs is neglected. Such a nanostructure can be
formed, e.g., in a quantum wire, which is fabricated from
different materialsf21g. We assume that the nanostructure
possesses cylindrical symmetry and lateral confinement of
the electrons, i.e., the confinement in thex-y plane, perpen-
dicular to the growthszd axis, is much stronger than the*Electronic address: adamowski@ftj.agh.edu.pl
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vertical szd confinement. The lateral confinement is approxi-
mated by a harmonic-oscillator potential and the vertical
confinement has the form of asymmetric potential wells
separated by the barriersFig. 1d. Under these assumptions
the three-dimensional eigenvalue problem can be reduced to
a one-dimensional problemf22,23g with the effective
electron-electron interaction

Ueffsz1,z2d =
e2Îpb

4pe0e
ebuz1 − z2u2 erfcsÎbuz1 − z2ud, s1d

wherez1 andz2 are the vertical coordinates of the electrons,
e is the relative electric permittivity of the QD material,b
=me"v' /2, me is the effective electron band mass, and"v'

is the oscillator excitation energy for the lateral confinement
f22,23g. The effective Hamiltonian of the two electrons con-
fined in the two asymmetric QDs has the formf23g

H0 = −
"2

2me
S ]2

]z1
2 +

]2

]z2
2D + Uconfsz1d + Uconfsz2d + Ueffsz1,z2d,

s2d

where the ground-state energy of two noninteracting elec-
trons in the lateral parabolic potential is taken on as the ref-
erence energy andUconfszid is the vertical confinement poten-
tial energy of theith electron. In each QD, the confinement
potential is differentscf. Fig. 1d, which allows us to distin-
guish the electrons localized in the left and right QDs. The
single electron confined in the left QD will act as a control

qubit and the electron confined in the right QD as a target
qubit. Each QD consists of two regions with shallow and
deep potential wells that have thicknessesSL sSRd and DL

sDRd, respectively. The values of the QD parameters taken in
the present calculations are quoted in Table I. Figure 1 also
shows the electron density for the single-electron states, the
ground stateu0l and first excited stateu1l, localized in the left
QD.

The asymmetry of the confinement potential leads to a
shift of the electron density distribution with respect to the
symmetric QDfcf. Figs. 2sad and 2scdg. In the even- and
odd-parity states, the electron density is shifted in opposite
directions, which causes different electron-electron interac-
tion energy depending on the one-particle states occupied.
We note that a similar effect can be obtained when applying
an external electric field to the nanostructurefFig. 2sbdg.
However, the application of the electric field is disadvanta-
geous since already the weak electric field can cause a leak-
age current, which empties the QD.

It appears that the two-electron system considered pos-
sesses many bound states with energy levels in the relevant
energy regimescf. Table IId. The ground state of the system,
denoted asu00l, is the spin singlet. The gate operations will
be realized by dipole radiative transitions, which do not
change the spin of the electron. Therefore, we will consider
only spin singlet states as candidates for the states of the

TABLE I. Optimized values of the parameters of the model QD
nanostructure.

Region Thicknesssnmd Potential-well depthsmeVd

SL 19 200

DL 4 305

B 10 0

DR 4 305

SR 27 200

FIG. 1. Confinement potential profile in the vertical direction for
two coupled QDs. Shown is also the electron probability density for
the one-electron groundsu0ld and first excitedsu1ld states.B is the
barrier thickness,DL sDRd is the thickness of the deep potential-well
region in the leftsrightd QD, andSL sSRd is the thickness of the
shallow potential-well region in the leftsrightd QD.

FIG. 2. Electron probability density for the one-electron ground
and first excited states localized insad symmetric QD,sbd symmet-
ric QD in an electric field, andscd asymmetric QD. Arrows indicate
the shift of the electron density in casessbd andscd with respect to
casesad.

TABLE II. Energy levelsEn of the ten lowest-energy states of
the model two-electron system.n numbers the subsequent energy
levels. The lateral excitation energy 2"v' is included inEn. The
computational-basis statesui j l are listed in the last column.

n En smeVd ui j l

1 −356.59 u00l
2 −342.15

3 −342.02

4 −329.81 u01l
5 −324.80

6 −321.57 u10l
7 −313.98

8 −307.86

9 −301.09

10 −293.34 u11l
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computational basis. In simulations of the two-qubitCNOT
gate, the computational-basis states, denoted byu00l, u01l,
u10l, and u11l, have been chosen as the two-qubit states,
which correspond to the occupation of each QD by a single
electron. The stateu00l corresponds to the occupation of one-
electron ground states in different QDs, in stateu01l su10ld,
the electron in the left QD is in the ground statesfirst excited
stated and the electron in the right QD is in the first excited
statesground stated, and in stateu11l the electrons in both the
QDs are in the first excited state. Table II shows that—in the
energy range between the energy levels corresponding to the
statesu00l and u11l—there are several discrete energy levels.
For n=2, 3, 5, 7, and 9 the energy levels are associated with
bound states in which both the electrons are localized in the
same QD. In the simple modelf2g of the QD, these addi-
tional bound states were neglected. In the present paper, we
will take into account the effect of these states on the pos-
sible quantum transitions.

In an asymmetric QD system, the Coulomb interaction
energy between the electrons in the various states is differ-
ent. This interaction energy depends on the occupation of the
quantum states in the QDs. Therefore, the subsequent energy
levels associated with the different two-electron states will
be shifted upward on the energy scale by different values.
This energy-level differentiation will play a crucial role in
quantum-gate operation. The separations between the energy
levels of the computational basis states are listed in Table III,
in which Eij si , j =0,1d denotes the energy of the
computational-basis stateui j l. We are interested in the fol-
lowing energy differences:DEI =E01−E00, DEII =E11−E10,
andDE=DEII −DEI. For reliable quantum-gate operation the
energy differenceDE should be sufficiently large in order to
ensure the selective absorption of the electromagnetic radia-
tion. According to the uncertainty principle, the shorter the
time of transition between the considered states, the larger
the misfit of the transition energies. In consequence, if there
exist additional bound states with energy levels localized in
the near neighborhood of the final-state energy level these
additional states can be occupied with nonzero probability.

In the dipole approximation, the Hamiltonian of the inter-
action of the electrons with the electromagnetic wave is
given by

Hint = A cossvtdp̂ = − i"A cossvtdS ]

]z1
+

]

]z2
D , s3d

where A is the electromagnetic wave amplitude,v is the
wave frequency,t denotes the time, andp̂ is the operator of

the z component of the total two-electron momentum. The
time evolution of the two-electron system is determined by
the total HamiltonianH=H0+Hint.

The time of transition between two quantum states be-
comes shorter if the wave amplitudeA increases. However,
the amplitudeA cannot be too large, since for largeA we
deal with a large spread of the energy of the electromagnetic
wave, which leads to undesirable transitions to the neighbor-
ing states. Therefore, there exists an upper bound on the
wave amplitudeA, which results from the actual energy-level
structurescf. Table IId. The existence of this upper limit on
the wave amplitudeA is disadvantageous, since it disables
shortening of the gate-operation time, which is necessary to
complete the possibly large number of gate operations within
the coherence timef24g. In conclusion, it is of crucial impor-
tance for efficient gate operation that the energy levels are
significantly differentiated. In particular, the energy levels
associated with the computational-basis states should be dis-
tinctly separated.

Taking the above limitations into account we have opti-
mized the shape of the confinement potentialUconfszd in or-
der to obtain the energy-level structure that minimizes the
time duration of the single quantum-gate working cycle. Ad-
ditionally, we require the probability of quantum transitions
between the initial and final states to be larger than 99.9%.
We also note that the thickness of the barrier layer has to be
limited from below in order to suppress the electron tunnel-
ing between the QDs. The values of parameters listed in
Table I have been obtained from this optimization.

The two-electron bound states of Hamiltonians2d have
been calculated by the imaginary-time step methodf25g. Ac-
cordingly, we start from the time-dependent Schrödinger
equation

i"
]csz1,z2,td

]t
= H0csz1,z2,td, s4d

introduce the imaginary variablet= it into Eq. s4d, and sub-
stitute the derivatives by the appropriate finite-difference ap-
proximations. A simple transformation leads to the following
iterative procedure:

cn+1 = cn −
Dt

"
H0cn, s5d

where the indexn labels the subsequent iterations, i.e., the
subsequent imaginary-time steps. The time intervalDt is
chosen so that the iterative procedure is possibly fast and
convergent. The iterative procedures5d converges toward the
ground-state wave function. The excited-state wave func-
tions are found by the same procedure associated with the
simultaneous orthogonalization of the currently calculated
wave function to the previously found wave functions asso-
ciated with the lower-energy levels.

The real-time evolution of the system is obtained if we
substitute Eq.s5d by the iterative proceduref26g, which is
symmetric against time inversion, i.e.,

TABLE III. Energy separations between energy levelsEij of the
computational-basis statesui j l and energy differenceDE between
the two transition energies relevant to theCNOT gate operation.

Energy difference smeVd

DEI =E01−E00 26.78

DEII =E11−E10 28.23

E10−E01 8.24

E10−E00 36.47

E11−E01 35.02

DE=DEII −DEI 1.45

TIME-EVOLUTION SIMULATION OF CONTROLLED-NOT… PHYSICAL REVIEW A 71, 062327s2005d

062327-3



cn+1 = cn−1 − 2i
Dt

"
Hcn, s6d

whereH is the total Hamiltonian, which takes into account
the interaction with the electromagnetic wave as given by
Eq. s3d.

We study the quantumCNOT gate, defined by the unitary
operator UCNOT, which acts on the computational-basis
states as follows:

UCNOTu00l = u00l, s7ad

UCNOTu01l = u01l, s7bd

UCNOTu10l = u11l, s7cd

UCNOTu11l = u10l. s7dd

The operatorUCNOT changes the target qubit if and only if
the control qubit is set tou1l. The quantumCNOT gate pos-
sesses the important property of the creation of entangled
quantum states, i.e.,

UCNOTsau0l + bu1ldu0l = au00l + bu11l, s8d

where uau2+ ubu2=1. In the present paper, we will simulate
the four operations defined by Eqs.s7ad–s7dd and the cre-
ation of the entangled state defined by Eq.s8d.

III. RESULTS

The eigenfunctionsc of Hamiltonians2d depend on two
spatial coordinates, which determine the positions of the two
electrons, i.e.,c=csz1,z2d. Figure 3 shows the probability
density, i.e.,rsz1,z2d= ucsz1,z2du2, as a function of electron
coordinates for the ten lowest-energy states. The probability
densityrsz1,z2d is symmetric against the interchange of the
electron positions, i.e.,rsz1,z2d=rsz2,z1d. In Fig. 3 this sym-

metry is shown as reflection symmetry with respect to the
diagonald. In the computational-basis states, each electron
should be localized in a different QD, which corresponds to
the electron probability density localized in quadrants I and
IV. This condition is satisfied by the states with numbers 1, 4,
6, 8, and 10. We choose states 1, 4, 6, and 10scf. Fig. 3 and
Table IId as the computational-basis states, since they are
constructed from the ground and first excited states of a
single qubitsthe state 8 corresponds to the second excited
stated. The states for which the electron probability density is
localized in quadrants II and III correspond to the localiza-
tion of both the electrons in the same QDsquadrant II in the
right QD and quadrant III in the left QDd.

According to Eq.s8d, the CNOT gate produces the en-
tangled state from the superposition of states. Figure 4 shows
the two-electron wave function and electron probability den-
sity of the maximally entangled state, i.e.,

1
Î2

su00l + u11ld. s9d

The profiles of the wave function alongz2=a andb demon-
strate that the entanglement condition is satisfied. This con-
dition can be formulated as the following nonseparability
condition:

csz1,z2d Þ fsz1dfsz2d, s10d

where fszd is the one-electron wave function. If the state
were unentangled, the following equality would be satisfied:

csz1,ad = const3 csz1,bd, s11d

which is equivalent to the separability of the two-electron
wave function into a product of one-electron wave functions.

In the following, we present the results of the simulations
of the CNOT gate working cycles, defined by Eqs.s7ad–s7dd,
and the entanglement production, defined by Eq.s8d. The
CNOT gate operator can be formally written down as follows:

FIG. 3. Contours of the probability density for
the ten lowest-energy states of the two-electron
system in the coupled QD nanostructure. Dashed
lines separate different quadrants;d denotes the
diagonal.
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UCNOT= expS−
i

"
HtD , s12d

whereH is the total Hamiltonian of the two-electron system
interacting with the electromagnetic wave with appropriately
chosen frequencyv. In the simulations of theCNOT gate
operation, we have chosen thep pulse with duration timetp

defined by

tpA

"
zk10up̂u11lz = p, s13d

and with a fixed frequency that corresponds to the energy
difference DEII between the energy levels associated with
two-qubit statesu11l and u10l.

In order to enable a presentation of the time evolution of
the two-qubit states, we integrate the two-particle probability
density over one spatial coordinate and obtain the one-
particle probability density

r1sz1,td =E
−`

+`

dz2rsz1,z2,td, s14d

where we have explicitly introduced the time dependence
into the electron probability density. Figure 5 displays the
one-electron probability density, i.e.,r1sz1,0d, for the sta-
tionary states of the computational basis.

Figures 6–9 demonstrate the simulations of different out-
comes of theCNOT gatefEqs.s7ad–s7ddg. In Figs. 6–10, the
abscissa corresponds to electron positionz1 and the ordinate
corresponds to the time. The contour plots show the one-
electron probability densityr1sz1,td.

In the present work, the simulation of the realization of
each transformation, given by Eqs.s7ad–s7dd and s8d, has
been divided into three steps. During the first two stepssad
and sbd the required initial quantum state of the system is
prepared, while stepscd corresponds to theCNOT gate opera-
tion. In stepsad the system relaxes to the ground state, de-
noted by u00l. This relaxation process is simulated by the
imaginary-time step methodfnote the different time scale
used in partssad andsbd, scd in Figs. 6–10g. We need several
hundreds of iterations in order to prepare the ground state, in
which the electron probability density is mainly localized in
the deep potential-well regionsfcf. Figs. 5sad, 6sad, 7sad,
8sad, 9sad, and 10sadg. Stepsbd consists in the preparation of
the initial state of the systemfcf. Figs. 6sbd, 7sbd, 8sbd, 9sbd,

FIG. 5. One-electron probability densityfEq. s14dg for the
computational-basis states fort=0. Also shown is the profile of the
confinement potential.

FIG. 6. Contour plots of the electron probability density as func-
tions of timet and spatial coordinatez=z1 for the working cycle of
the CNOT gate corresponding to the operation defined by Eq.s7ad.
sa,bd corresponds to the relaxation of the system to the ground state
and simultaneously the preparation of the initial state.scd corre-
sponds to theCNOT gate operation defined by Eq.s7ad.

FIG. 4. Contour plots of the wave functionsad
and the electron probability densitysbd for the
entangled statefEq. s9dg. In sad the values of the
wave function are given in gray scale: the bright
sdarkd areas correspond to the positivesnegatived
wave-function values. A more detailed descrip-
tion is given in text.

TIME-EVOLUTION SIMULATION OF CONTROLLED-NOT… PHYSICAL REVIEW A 71, 062327s2005d

062327-5



and 10sbdg. For the transformation given by Eq.s7ad the
initial state is already prepared during the relaxation process
fcf. Fig. 6sad and 6sbdg. However, for the next three transfor-
mations given by Eqs.s7bd–s7dd the initial state is prepared
with the help of thep pulse with frequency adjusted to the
corresponding transition. Partssbd of Figs. 7–9 show that
electron density is transferred from the deep into the shallow
potential-well region, which corresponds to the transition of
one electron from the ground state to the first excited state.
During this process the electron density of the second elec-
tron remains unchanged, i.e., this electron is still in the
ground state. Figure 9sbd shows that the initial stateu11l is
prepared in two steps as a result of the transitionsu00l
→ u10l→ u11l.

Having the system prepared in the initial state, we apply
the p pulse with frequencyv=42.9 THz, i.e., with photon
energy"v exactly equal to the energy differenceDEII of the
transition between the statesu10l and u11l. This p pulse re-

alizes theCNOT gate operationfcf. Figs. 6scd, 7scd, 8scd, 9scd,
and 10scdg. The electromagnetic radiation with photon en-
ergy "v=DEII does not cause any transitions between states
u00l and u01l.

The production of the entangled state as a result of the
CNOT gate is demonstrated in Fig. 10. In stepsbd the system
has been prepared in initial statesu00l+ u10ld /Î2 as a result
of the absorption of thep /2 pulse with frequency adjusted to
the transitionu00l→ u10l. In step scd, we apply to the pre-
pared initial state ap pulse that realizes theCNOT gate op-
eration and produces the entangled statescf. Fig. 4d.

IV. DISCUSSION

Let us discuss the limitations on quantum gate operation
with coupled QDs that result from the decoherencef19g. In

FIG. 7. Contour plots of the electron probability density as func-
tions of timet and spatial coordinatez=z1 for the working cycle of
the CNOT gate corresponding to the operation defined by Eq.s7bd.
sad relaxation to the ground state,sbd preparation of initial stateu01l,
and scd CNOT gate operation defined by Eq.s7bd.

FIG. 8. Contour plots of the electron probability density as func-
tions of timet and spatial coordinatez=z1 for the working cycle of
the CNOT gate corresponding to the operation defined by Eq.s7cd.
sad Relaxation to the ground state,sbd preparation of initial state
u10l, andscd CNOT gate operation defined by Eq.s7cd.

FIG. 9. Contour plots of the electron probability density as func-
tions of timet and spatial coordinatez=z1 for the working cycle of
the CNOT gate corresponding to the operation defined by Eq.s7cd.
sad Relaxation to the ground state,sbd two-step preparation of initial
stateu11l, andscd CNOT gate operation defined by Eq.s7dd.

FIG. 10. Contour plots of the electron probability density as
functions of timet and spatial coordinatez=z1 for the entanglement
process defined by Eq.s8d. sad Relaxation to the ground state,sbd
preparation of initial statesu00l+ u10ldÎ2, andscd entanglement pro-
duction defined by Eq.s8d.
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order to perform efficient quantum computations it is neces-
sary to repeat the gate working cycle many times before the
decoherence occurs. This poses certain bounds on theCNOT

gate operation time. If the quantum transitions were ideally
energetically selective, then the application of thep pulse
would transform the two-electron system into the appropriate
final state with probability 1. However, the ideal quantum
transitions could occur only in the limittp→`, i.e., for very
small wave amplitude. If the pulse duration time is finite, the
quantum transition is no longer ideally selective and the re-
quired final state is reached with probability less than 1. The
p-pulse duration time is limited by the finite coherence time
of the qubit. However, before the qubits become affected by
the decoherence, a quantum computer has to perform a large
number of operations, e.g., in order to apply the error-
correcting codes. The optimalp-pulse duration time has to
satisfy the conditiontp,T/N, whereT denotes the coher-
ence time andN is the number of gate operations we want to
perform during timeT. We note thatN is proportional to the
wave amplitudeA. As a result, for fixed coherence timeT the
probability of reaching the appropriate final state depends on
the numberN of the required operations.

Performing simulations of theCNOT gate operation for
different wave amplitudesA, we have determined this depen-
dencesFig. 11d. For these simulations we have chosen the
transition from stateu10l to u11l given by Eq.s7cd. The prob-
ability Pstd of reaching the final stateu11l is calculated as
follows: Pstd= zk11ucstdlz2. During the gate operation, the
probability Pstd increases and reaches the maximal value if
the duration time is equal totp. We note that for the real
transitionsPstpd,1. Figure 11 displays probabilityPstpd of
reaching the proper final state as a function of the numberN
of operations performed during coherence timeT swe have
taken T=1 nsd. If we require the correct transitions to be

realized with probability 99.9%, the model QD system can
perform merely,60 gate operations during the coherence
time. However, if we lower this limit to 99.0%, the number
of gate operations performed before decoherence takes place
is increased to,150.

V. CONCLUSIONS AND SUMMARY

We have simulated theCNOT gate operation by solving the
time-dependent Schrödinger equation for a two-electron sys-
tem confined in double coupled asymmetric QDs. For this
purpose we have selected four computational-basis states.
We have shown that the quantumCNOT gate can be realized
with these states under the assumption of ideally selective
quantum transitions. For real nanostructures the existence of
additional bound states of the electrons confined in the QD
and decoherence put certain limitations on the gate opera-
tions. Due to the finite coherence time the gate operation
time has to be bound from above, which causes the quantum
transitions to cease to be ideally selective, i.e., not only the
computational-basis states can be occupied by the electrons.
Therefore, the probability of reaching the appropriate final
state, which belongs to the computational basis, is less than
1. The simulations performed show that—under the assump-
tion of 99.9% probability of the required transition—the
model QD system can perform,60 gate operations during
the coherence time of 1 ns. If, however, according to Ref.
f27g, we take a less optimistic estimate of the coherence
time, i.e., Tø70 ps, the number of completed operations
falls down to 4. In each case the estimated numbers of gate
operations performed during the coherence time are by sev-
eral orders of magnitude too small to complete successful
quantum computation with the orbital states of electrons con-
fined in coupled QDs. However, the application of spin states
of the confined electrons is more promising due to the much
longer spin relaxation timef16g. Moreover, if the QD device
could transfer its entangled state onto entangled photons
f28,29g, the scheme proposed in the present paper could have
a practical meaning.

In summary, based on time-evolution simulations, we
have shown that physical realization of the quantumCNOT

gate is possible with coupled asymmetric QDs before the
decoherence destroys the information stored in the qubits.
We have optimized the parameters of the nanodevice and
obtained quantitative estimates of the gate operation time
and the probability of reaching the required final state. It
appears that—in the considered coupled QD system—the
gate operation time is not small enough as compared with the
coherence time. Nevertheless, having at disposal a nanode-
vice that can perform severalCNOT operations during the
coherence time, we can study its possible application to the
recently proposed production of entangled photon states.
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FIG. 11. ProbabilityP of transition from initial stateu10l to final
state u11l as a function of the numberN of gate operations for
coherence timeT=1 ns.
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