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Time-evolution simulation of a controlledNOT gate with two coupled asymmetric quantum dots
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We study a possible physical realization of a quantum controliedgate with the use of two weakly
coupled asymmetric quantum dots. Solving the time-dependent Schrédinger equation for the model two-
electron system, we simulate the infrared-radiation-induced quantum transitions that correspond to basic gate
operations. We require the transition probabilities to be close to 1 and optimize the parameters of the nano-
structure in order to make the gate operation time as short as possible. In the simulations, we have taken into
account the entire energy spectrum, which can be populated by the absorption or emission of the infrared
radiation. We discuss the consequences of the existence of many bound two-electron states on the probability
of radiative transitions.
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I. INTRODUCTION mentation of the gate we have to find a physical realizations

of the states of a computational basis and a unitary operator,

In recent papers, one can find many theoretical proposalghich performs thecNoT logic gate. In the present model,
for the implementation of quantum dot®Ds) [1] in quan-  he computational basis is composed from the four selected

tum computatiorj2-185|. These proposals consist in applica- gjgenstates of two electrons confined in two asymmetric
tion of either the orbital or spin states of electrons conflnecbDS. ThecNOT operation is realized with the help of an
in the QDs. The orbital states_of elect_ron_s in the couplednfrared radiation pulse with a proper duration time.

QDs were proposed for a possible re_allzatlon of a quantum ¢ implementation of thenoT gate on the basis of
controlledNoT (QNOT) gat9[2,5,7,q. Spin states of coupled coupled QDs was first proposed by Bareretcal. [2], who
QDs are intensively studi€®,4,6,19 as possible candidates ¢onsjdered two symmetric QDs, in which the asymmetry was
for qubits and quantum logic gates due to the long relaxatiolyenerated by an external electric field. The application of
time of Zeeman-spll_t states in an external magnetic fiel oupled asymmetric QDs to realizecaoT gate was studied
[16]. Performing a direct measurement, Hansdral. [16] by Bajandin and Wangg], Sanderst al. [9], and Tanamoto
demonstrated that the relaxation time of the spin states of tr‘le/]_ In the paper$5,7,9 a one-dimensional model nanostruc-
QD-confined electrons is sufficiently long to use these stateg,re is employed and the interaction between the electrons in
as qubits in quantum computation. Hayashial. [18] re-  itferent QDs is taken on in a simplified form as the dipole-
ported the coherent manipulation of spin qub|ts in Iaterallydipme interaction[5,9]. Moreover, the authorgs,7,9 take
coupled QDs. The large number of theoretical papers Ofg account only the lowest-energy states. In the present
quantum computation with QDs, e.42-4,6-13,1% is i paper, we extend the modE2,5,9 to a three-dimensional
contrast with the small number of experimental studies, .9nanostructure and take into account all the two-electron
[16-18. The discrepancy between the numbers of theoreticaliaies with discrete energy levels in the energy interval of
and experimental papers mainly results from the decoherenggierest. We calculate the gate operation time, which is of
problem[19]. In order to use the qubits as efficient informa- ¢r,cjal importance for the possible physical realization of

tion carriers and to perform a unitary time evolution of themQD-based quantum computation, and compare this time with
we have to maintain the coherent quantum states for a timg,s conerence timL9].

that exceeds by many orders of magnitude the quantum gate The paper is organized as follows: We present the theo-
operation time. This requirement is very difficult to satisfy in yetical model in Sec. Il and the results of simulations in Sec.

solid-state devices. _ I, Sec. IV contains a discussion, and Sec. V conclusions
The present work is an attempt to fill the gap between thg,nq 5 summary.

existing theoretical treatments and experiment. For a system
of coupled QDs we perform a direct numerical simulation of

the quantum gate operation. We apply a theoretical model Il. THEORETICAL MODEL
that possibly well reproduces the properties of the real nano-

structure. In this model we can keep the coherent qubit statggejc Qps. The barrier separating the QDs is taken to be
f?cr ﬁn arbg?rar;\o\}or;g time an?] perform tt;e unitary evrc])llurt:on sufficiently wide so that the tunneling of electrons between
of the qubits. We focus on the two-quimhoT gate, whic the individual QDs is neglected. Such a nanostructure can be
together with all the one-qubit gates, constitutes a universgi .4 o g., in a quantum wire, which is fabricated from
set of quantum logic gate20]. For the purpose of imple- different material§21]. We assume that the nanostructure
possesses cylindrical symmetry and lateral confinement of
the electrons, i.e., the confinement in thg plane, perpen-
*Electronic address: adamowski@ftj.agh.edu.pl dicular to the growth(z) axis, is much stronger than the

We consider two electrons confined in two coupled asym-
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FIG. 2. Electron probability density for the one-electron ground
and first excited states localized (@ symmetric QD,(b) symmet-
ric QD in an electric field, an¢c) asymmetric QD. Arrows indicate
the shift of the electron density in cas@s and(c) with respect to
FIG. 1. Confinement potential profile in the vertical direction for case(a).
two coupled QDs. Shown is also the electron probability density for
the one-electron ground0)) and first excited|1)) statesB is the  qubit and the electron confined in the right QD as a target
barrier thicknessD| (Dg) is the thickness of the deep potential-well qubit. Each QD consists of two regions with shallow and
region in the left(right) QD, andS§ (SR? is the thickness of the deep potential wells that have thicknes&s(Sg) and D,
shallow potential-well region in the leftight) QD. (Dp), respectively. The values of the QD parameters taken in
the present calculations are quoted in Table I. Figure 1 also
vertical (z) confinement. The lateral confinement is approxi-shows the electron density for the single-electron states, the
mated by a harmonic-oscillator potential and the verticalground statd0) and first excited statgl), localized in the left
confinement has the form of asymmetric potential wellsQD.
separated by the barri¢Fig. 1). Under these assumptions  The asymmetry of the confinement potential leads to a
the three-dimensional eigenvalue problem can be reduced &hift of the electron density distribution with respect to the
a one-dimensional probleni22,23 with the effective symmetric QD[cf. Figs. 2a) and Zc)]. In the even- and
electron-electron interaction odd-parity states, the electron density is shifted in opposite
— directions, which causes different electron-electron interac-
Uui(z.2,) = e2v77,3e3|21_22\2erfc(v,%|zl_zz|), (1) tion energy depgnding on the one-partic_;le states occup'ied.
dmege We note that a similar effect can be obtained when applying
an external electric field to the nanostructyfég. 2(b)].
"However, the application of the electric field is disadvanta-
geous since already the weak electric field can cause a leak-
age current, which empties the QD.
It appears that the two-electron system considered pos-
sesses many bound states with energy levels in the relevant

[0> -

wherez, andz, are the vertical coordinates of the electrons
€ is the relative electric permittivity of the QD materig8,
=msiw, /2, m,is the effective electron band mass, dnol;
is the oscillator excitation energy for the lateral confinemen
[22,23. The effective Hamiltonian of the two electrons con-

fined in the two asymmetric QDs has the foffig] energy regimécf. Table Il). The ground state of the system,
B2 [ P P denoted a$00), is the spin singlet. The gate operations will
0="- ﬁ(g + Ez) +Uconf(Z) + Ucon(Z2) + Uerd(Z1,2),  be realized by dipole radiative transitions, which do not
o= change the spin of the electron. Therefore, we will consider
(2)  only spin singlet states as candidates for the states of the

where the ground-state energy of two noninteracting elec-

trons in the lateral parabolic potential is taken on as the ref- TABLE Il. Energy levelsE, of the ten lowest-energy states of
erence energy and..{z) is the vertical confinement poten- the model two-electror_l system.numbers_ the subsequent energy
. . . levels. The lateral excitation energy:@, is included inE,. The
tial energy of theth electron. In each QD, the confinement . . . . :

potential is differentcf. Fig. 1), which allows us to distin- computational-basis statéi§) are listed in the last column.

guish the electrons localized in the left and right QDs. The

single electron confined in the left QD will act as a control v E, (meV) i
1 -356.59 |00)
TABLE |. Optimized values of the parameters of the model QD 2 -342.15
nanostructure. 3 ~342.02
Region Thicknesgnm) Potential-well deptiimeV) 4 ~329.81 03
5 -324.80
S 19 200 6 -321.57 |10)
D, 4 305 7 -313.98
B 10 0 8 -307.86
Dr 4 305 9 -301.09
SN 27 200 10 -293.34 |11)

062327-2



TIME-EVOLUTION SIMULATION OF CONTROLLED-NOT... PHYSICAL REVIEW A 71, 062327(2005

TABLE lIl. Energy separations between energy levgjsof the  the z component of the total two-electron momentum. The
computational-basis stat¢i§) and energy differencAE between  time evolution of the two-electron system is determined by

the two transition energies relevant to theoT gate operation. the total HamiltoniarH=Hg+H;p,.
_ The time of transition between two quantum states be-
Energy difference (meV) comes shorter if the wave amplitudeincreases. However,

the amplitudeA cannot be too large, since for lardewe

AE=Eo1~Eoo 26.78 deal with a large spread of the energy of the electromagnetic

AB=E1n~Eio 28.23 wave, which leads to undesirable transitions to the neighbor-
E10~Eos 8.24 ing states. Therefore, there exists an upper bound on the
E10~Eoo 36.47 wave amplituded, which results from the actual energy-level
Ei11—Eo 35.02 structure(cf. Table Il). The existence of this upper limit on

AE=AE, -AE, 1.45 the wave amplitudeé) is disadvantageous, since it disables

shortening of the gate-operation time, which is necessary to
complete the possibly large number of gate operations within

computational basis. In simulations of the two-qubROT h h . lusion. it is of ial i
gate, the computational-basis states, denotedoBy |01), the coherence timg24]. In conclusion, it is of crucial impor-
110), and |11), have been chosen as the two-qubit Statestance for efficient gate operation that the energy levels are

which correspond to the occupation of each QD by a singléigniﬁ?amly Qiﬁerentiated. In particula_r, the energy Ievels.
electron. The statf0) corresponds to the occupation of one- a;ssomated with the computational-basis states should be dis-
electron ground states in different QDs, in sti#) (|10,  tinctly separated. _
the electron in the left QD is in the ground stéfiest excited .Takmg the above Ilmltathns into account we have opti-
state and the electron in the right QD is in the first excited Mized the shape of the confinement potentlgi,(2) in or-
state(ground statg and in statél1) the electrons in both the der to obtain the energy-level structure that minimizes the
QDs are in the first excited state. Table Il shows that—in thgime duration of the single quantum-gate working cycle. Ad-
energy range between the energy levels corresponding to tluktionally, we require the probability of quantum transitions
stateg00) and|11)—there are several discrete energy levels.between the initial and final states to be larger than 99.9%.
Forv=2, 3,5, 7, and 9 the energy levels are associated withVe also note that the thickness of the barrier layer has to be
bound states in which both the electrons are localized in thémited from below in order to suppress the electron tunnel-
same QD. In the simple modg2] of the QD, these addi- ing between the QDs. The values of parameters listed in
tional bound states were neglected. In the present paper, Weble | have been obtained from this optimization.

will take into account the effect of these states on the pos- The two-electron bound states of Hamiltonié?) have
sible quantum transitions. been calculated by the imaginary-time step metf2i. Ac-

In an asymmetric QD system, the Coulomb interaction,qgingly, we start from the time-dependent Schrédinger
energy between the electrons in the various states is d'ﬁe(équation

ent. This interaction energy depends on the occupation of the
guantum states in the QDs. Therefore, the subsequent energy
levels associated with the different two-electron states will  0(Z21,25,1)
be shifted upward on the energy scale by different values. = =Hol(z.2.1), (4)
This energy-level differentiation will play a crucial role in
quantum-gate operation. The separations between the energy , . , o
levels of the computational basis states are listed in Table I1introduce the imaginary variable=it into Eq. (4), and sub-
in which E; (i,j=0,1) denotes the energy of the stitute the derivatives by the appropriate finite-difference ap-
computational-basis stati). We are interested in the fol- Proximations. A simple transformation leads to the following
lowing energy differencesAE,=Eq;~Eq, AE,=E;;—E,, iterative procedure:
andAE=AE, —AE,. For reliable quantum-gate operation the
energy differencé\E should be sufficiently large in order to Ar
ensure the selective absorption of the electromagnetic radia- S =y - —H, (5
tion. According to the uncertainty principle, the shorter the h
time of transition between the considered states, the larger
the misfit of the transition energies. In consequence, if thergyhere the index labels the subsequent iterations, i.e., the
exist additional bound states with energy levels localized irbubsequent imaginary-time steps. The time intetval is
the near neighborhood of the final-state energy level thesghosen so that the iterative procedure is possibly fast and
additional states can be occupied with nonzero probability. convergent. The iterative proceduf® converges toward the
In the dipole approximation, the Hamiltonian of the inter- ground-state wave function. The excited-state wave func-
action of the electrons with the electromagnetic wave igjons are found by the same procedure associated with the
given by simultaneous orthogonalization of the currently calculated
J 9 wave function to the previously found wave functions asso-
Hint=Acodwt)p=—ihA COS((Uﬂ(g + E) (3)  ciated with the lower-energy levels.
1 2 The real-time evolution of the system is obtained if we
where A is the electromagnetic wave amplitude,is the  substitute Eq(5) by the iterative procedurf26], which is
wave frequencyt denotes the time, anjl is the operator of symmetric against time inversion, i.e.,
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@: FIG. 3. Contours of the probability density for
@: the ten lowest-energy states of the two-electron
L__ _9_: ______ system in the coupled QD nanostructure. Dashed
@QQ lines separate different quadrantsdenotes the
| diagonal.
|
Zy
Z4

o1 oAt metry is shown as reflection symmetry with respect to the

Yyri=yn ‘Z'gHW’ (6)  diagonald. In the computational-basis states, each electron

should be localized in a different QD, which corresponds to

whereH is the total Hamiltonian, which takes into account the electron probability density localized in quadrants | and

the interaction with the electromagnetic wave as given byV. This condition is satisfied by the states with numbers 1, 4,
Eqg. (3). 6, 8, and 10. We choose states 1, 4, 6, andctOFig. 3 and

We study the quanturoNOT gate, defined by the unitary Table 1) as the computational-basis states, since they are

operator UcnoT, Which acts on the computational-basis constructed from the ground and first excited states of a

states as follows: single qubit(the state 8 corresponds to the second excited
_ statg. The states for which the electron probability density is
Ucnotl00) =100), (78 |ocalized in quadrants 1l and 1l correspond to the localiza-
tion of both the electrons in the same Qfuadrant Il in the
Ucnot01) =101, (7b)  right QD and quadrant Il in the left QD
According to Eq.(8), the cNOT gate produces the en-
UcnoTl10) = |11), (70 tangled state from the superposition of states. Figure 4 shows
the two-electron wave function and electron probability den-
Uenotl1D =]10). (7d) sity of the maximally entangled state, i.e.,
The operatoldcnoT changes the target qubit if and only if i_(|00> +|11) (9)
the control qubit is set t¢l). The quantuncNOT gate pos- 2 '

sesses the important property of the creation of entangled

guantum states, i.e., The profiles of the wave function alorg=a andb demon-
strate that the entanglement condition is satisfied. This con-
Ucnot(@/0) + 8]1))|0) = a|00) + B|11), (8)  dition can be formulated as the following nonseparability
condition:

where |a?+|B[?=1. In the present paper, we will simulate

the four operations defined by Eq9.a—(7d) and the cre- % 10

ation of the entangled state defined by ER). W22) # H2)¢(2), (10
where ¢(2) is the one-electron wave function. If the state

were unentangled, the following equality would be satisfied:
Il. RESULTS

= X
The eigenfunctiongy of Hamiltonian(2) depend on two W(21,8) = constx y(z,b), (1)

spatial coordinates, which determine the positions of the tw@uhich is equivalent to the separability of the two-electron
electrons, i.e.g=y(z,2,). Figure 3 shows the probability wave function into a product of one-electron wave functions.
density, i.e.,p(z1,2)=|¥(z;,2))|? as a function of electron In the following, we present the results of the simulations
coordinates for the ten lowest-energy states. The probabilitgf the cNOT gate working cycles, defined by Eqga—(7d),
densityp(z;,2,) is symmetric against the interchange of theand the entanglement production, defined by B). The
electron positions, i.ep(z;,2,)=p(2,,7). In Fig. 3 this sym-  cNOT gate operator can be formally written down as follows:
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30
151 @ 1 FIG. 4. Contour plots of the wave functida)
g @ ] g and the electron probability densitp) for the
- ol I entangled statfEq. (9)]. In (a) the values of the
N @ | = wave function are given in gray scale: the bright
15 (dark) areas correspond to the positifreegative
@ 1 wave-function values. A more detailed descrip-
30t 1 tion is given in text.
30 15 0 15 30
(@) zy [nm] (b) z; [nm]

i where we have explicitly introduced the time dependence
Ucnor=exp — 2 Ht), (12)  into the electron probability density. Figure 5 displays the
one-electron probability density, i.eo;(z;,0), for the sta-

hereH is th | Hamiltoni fth | tionary states of the computational basis.
whereH is the total Hamiltonian of the two-electron system = ;64 69 demonstrate the simulations of different out-

interacting with the electroma_gnetic_ wave with appropriatelyComes of thecnoT gate[Egs. (7a—7d)]. In Figs. 6-10, the
choser_1 frequency. In the S|mulat|on§ of th@_NOT_gate abscissa corresponds to electron positipand the ordinate
operation, we have chosen thepulse with duration timé;, - rresponds to the time. The contour plots show the one-
defined by electron probability density;(z;,t).

In the present work, the simulation of the realization of
each transformation, given by Eg&a—(7d) and (8), has
been divided into three steps. During the first two st&ps
and (b) the required initial quantum state of the system is
repared, while stefr) corresponds to theNoT gate opera-
on. In step(a) the system relaxes to the ground state, de-
noted by|00). This relaxation process is simulated by the
1jmaginary—time step methofhote the different time scale

In order tp enable a p_resentanon of the tlme evoluuon 0 used in partsa) and(b), (c) in Figs. 6-10. We need several
the two-qubit states, we integrate the two-particle probability, : : . .
hundreds of iterations in order to prepare the ground state, in

den§|ty over one spatl'al coordinate and obtain the ON€hich the electron probability density is mainly localized in
particle probability density

the deep potential-well regionsf. Figs. a), 6(a), 7(a),
8(a), 9(a), and 1@a)]. Step(b) consists in the preparation of

=2\10pl11] = 13

and with a fixed frequency that corresponds to the energl{ai
difference AE,, between the energy levels associated with
two-qubit state$11) and|10).

M the initial state of the systefef. Figs. &b), 7(b), 8(b), 9(b),
pr(z1) = f dzap(z1,22.0), (14 ystefer. Figs. 4b). 70), &(b). (b)
- (a.b) (c)
T T I T T
@ (d)
|00> [11> L
€ =
Jay =

|V | N

(©)
| | | | |
10> 01> 05 1 10 20 30
time [ps]
Ja\
/ \ / \ FIG. 6. Contour plots of the electron probability density as func-
tions of timet and spatial coordinate=z,; for the working cycle of

the cNoOT gate corresponding to the operation defined by (#q).
FIG. 5. One-electron probability densifyeq. (14)] for the (a,b corresponds to the relaxation of the system to the ground state
computational-basis states fior0. Also shown is the profile of the and simultaneously the preparation of the initial stat.corre-
confinement potential. sponds to theNoT gate operation defined by E({a).
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FIG. 9. Contour plots of the electron probability density as func-
tions of timet and spatial coordinate=z, for the working cycle of
the cNoOT gate corresponding to the operation defined by (#q).

(a) Relaxation to the ground stai) two-step preparation of initial
state|11), and(c) cNOT gate operation defined by E(d).

FIG. 7. Contour plots of the electron probability density as func-
tions of timet and spatial coordinate=z, for the working cycle of
the cNoOT gate corresponding to the operation defined by #b).

(@) relaxation to the ground stat@y) preparation of initial stat@®1),
and(c) cNoT gate operation defined by E(/b).

and 1@b)]. For the transformation given by E¢7a) the  alizes thecNoT gate operatioiicf. Figs. 6c), 7(c), 8(c), 9(c),
initial state is already prepared during the relaxation proces@nd 1@c)]. The electromagnetic radiation with photon en-
[cf. Fig. 6@a) and &b)]. However, for the next three transfor- ergyfiw=AE, does not cause any transitions between states
mations given by Eqs7b)—(7d) the initial state is prepared |00) and|01). .

with the help of therr pulse with frequency adjusted to the The pro_ductlon of the er_ltan_gled state as a result of the
corresponding transition. Parts) of Figs. 7-9 show that CNOT gate is demonstrated in Fig. 10. In stép the system
electron density is transferred from the deep into the shalloW}@s been prepared in initial stat@0)+|10))/12 as a result
potential-well region, which corresponds to the transition ofof the absorption of ther/2 pulse with frequency adjusted to
one electron from the ground state to the first excited statdhe transition|00)—[10). In step(c), we apply to the pre-
During this process the electron density of the second eled?@red initial state ar pulse that realizes thenoT gate op-
tron remains unchanged, i.e., this electron is still in the€ration and produces the entangled stafeFig. 4).

ground state. Figure(B) shows that the initial statd1) is
prepared in two steps as a result of the transititD

— 10— |11).

Having the system prepared in the initial state, we apply
the 7 pulse with frequencyw=42.9 THz, i.e., with photon
energyhw exactly equal to the energy differena&,, of the
transition between the stat¢k0) and|11). This 7 pulse re-

IV. DISCUSSION

Let us discuss the limitations on quantum gate operation
with coupled QDs that result from the decoherefit@). In

a b 5 c
(@) (b) © @ &35 ¢«
T T T T T T ‘ T + T T T
| |3
30 5 3 = 30 S S -
p=4 - j=4 ~
- - - r ]
151 = 15 1=
3 — = T 5
=5 0 - .ﬁ. 0 | ,8\
N =
A5 A5 ] 1<
&
30 ] -30 ]
| | | | | | | 1 1 1 | | | |
05 1 10 20 30 40 50 05 1 5 10 20 30 40
time [ps] time [ps]

FIG. 8. Contour plots of the electron probability density as func-
tions of timet and spatial coordinate=z, for the working cycle of
the cnoOT gate corresponding to the operation defined by [Eq).

(a) Relaxation to the ground statéy) preparation of initial state
|10), and(c) cNoT gate operation defined by E(c).

FIG. 10. Contour plots of the electron probability density as
functions of timet and spatial coordinate=z, for the entanglement
process defined by E8). (a) Relaxation to the ground staté)
preparation of initial stat¢00)+|10))+2, and(c) entanglement pro-
duction defined by Eq(8).
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1.00 realized with probability 99.9%, the model QD system can

perform merely~60 gate operations during the coherence
time. However, if we lower this limit to 99.0%, the number

of gate operations performed before decoherence takes place
is increased to-150.

0.99

V. CONCLUSIONS AND SUMMARY

0.98
We have simulated theNoT gate operation by solving the
o . T .
time-dependent Schrodinger equation for a two-electron sys-
0.97 tem confined in double coupled asymmetric QDs. For this
purpose we have selected four computational-basis states.
We have shown that the quantwnoOT gate can be realized
0.96 with these states under the assumption of ideally selective

quantum transitions. For real nanostructures the existence of
L - additional bound states of the electrons confined in the QD
and decoherence put certain limitations on the gate opera-
095 ' “l)o ' 2(|)0 ' 300 tions. Due to the finite coherence time the gate operation
N time has to be bound from 'above, Whlch causes the quantum
transitions to cease to be ideally selective, i.e., not only the
FIG. 11. ProbabilityP of transition from initial staté10) to final ~ computational-basis states can be occupied by the electrons.
state|11) as a function of the numbeX of gate operations for Therefore, the probability of reaching the appropriate final
coherence tim@=1 ns. state, which belongs to the computational basis, is less than
1. The simulations performed show that—under the assump-

order to perform efficient quantum computations it is necestion of 99.9% probability of the required transition—the
sary to repeat the gate working cycle many times before thénodel QD system can perform60 gate operations during
decoherence occurs. This poses certain bounds oonbe the coherence time of 1 ns. If, however, according to Ref.
gate operation time. If the quantum transitions were ideallyf27], we take a less optimistic estimate of the coherence
energetically selective, then the application of thepulse  time, i.e., T<70 ps, the number of completed operations
would transform the two-electron system into the appropriatdalls down to 4. In each case the estimated numbers of gate
final state with probability 1. However, the ideal quantumOperations performed during the coherence time are by sev-
transitions could occur only in the limit. —, i.e., for very eral orders of magnitude too small to complete successful
small wave amplitude. If the pulse duration time is finite, thequantum computation with the orbital states of electrons con-
guantum transition is no longer ideally selective and the refined in coupled QDs. However, the application of spin states
quired final state is reached with probability less than 1. Théf the confined electrons is more promising due to the much
m-pulse duration time is limited by the finite coherence timelonger spin relaxation timgL6]. Moreover, if the QD device
of the qubit. However, before the qubits become affected bgould transfer its entangled state onto entangled photons
the decoherence, a quantum computer has to perform a largé8.29, the scheme proposed in the present paper could have
number of operations, e.g., in order to apply the errora practical meaning. . _ . .
correcting codes. The optimai-pulse duration time has to [N summary, based on time-evolution simulations, we
satisfy the conditiort,<T/N, whereT denotes the coher- have shown that physical realization of the quantoroT
ence time andN is the number of gate operations we want to9ate is possible with coupled asymmetric QDs before the
perform during timeT. We note tha is proportional to the decoherence destroys the information stored in the qubits.
wave amplituded. As a result, for fixed coherence tinieche ~ We have optimized the parameters of the nanodevice and
probability of reaching the appropriate final state depends ofbPtained quantitative estimates of the gate operation time
the numbem of the required operations. and the probability of reaching the required final state. It
Performing simulations of thenoT gate operation for appears that—in the considered coupled QD system—the
different wave amplitudes, we have determined this depen- gate operation time is not small enough as compared with the
dence(Fig. 11). For these simulations we have chosen thecoherence time. Nevertheless, having at disposal a nanode-
transition from staté10) to |11) given by Eq.(7c). The prob-  Vice that can perform severaNOT operations during the
ability P(t) of reaching the final statf1) is calculated as Ccoherence time, we can study its possible application to the
follows: P(t)=|(11|¢(t))[2. During the gate operation, the recently proposed production of entangled photon states.
probability P(t) increases and reaches the maximal value if
the duration time is equal tb,. We note that for the real
transitionsP(t,) < 1. Figure 11 displays probabiliti(t,) of This paper has been partly supported by the Polish Min-
reaching the proper final state as a function of the nurhber istry of Scientific Research and Information Technology in
of operations performed during coherence timéwe have the framework of the solicited Grant No. PBZ-MIN-008/
taken T=1 ng. If we require the correct transitions to be P03/2003.
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