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Abstract
A problem of screening of electron–electron interaction by LO phonons
is investigated for bound two-electron systems in bulk semiconductors and
semiconductor quantum dots. We consider a D− centre and a two-electron
quantum dot and obtain the effective LO-phonon-induced interaction between
the electrons, i.e., Veff(r12) ∼ e2/[εeff(r12)r12], where r12 is the interelectron
distance and εeff(r12) is the effective phonon dielectric function. The calculated
phonon dielectric function rapidly increases for small r12 starting from the
high-frequency dielectric constant, ε∞, and reaches some constant value, ε̄, at
relatively small interelectron distances. We have found that—in most cases—
ε̄ is less than the static dielectric constant, εs. Only in the weakly ionic
compounds, like GaAs, ε̄ � εs. We argue that—in the bound few-electron
systems—ε̄ better approximates the average LO-phonon-induced screening
than the commonly used εs. We have also shown that the coupling with LO
phonons leads to the increase of the binding energy of the two-electron system
confined in the quantum dot.

1. Introduction

In solids, the interaction between conduction band electrons is screened by valence electrons
and the crystal lattice. In compound semiconductors, the LO phonons play a dominant role in
the lattice-induced screening of the electron–electron interaction. The electron–LO-phonon
coupling modifies the properties of charge carriers leading to a formation of polarons [1]. In
bulk ionic crystals, the two interacting, equally charged, polarons can form a bound system,
called a bipolaron, if the electron–LO-phonon coupling is sufficiently strong [2–5]. The two
negatively charged polarons bound on a positively charged donor impurity centre form a D−
centre [6], which exhibits a variety of properties [7] depending on material parameters of a
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semiconductor. The electron–LO-phonon coupling also modifies the properties of electrons
confined in quantum dots (QDs) [8–11] and the D− centre in the QDs [12]. The coupling
of charge carriers (electrons and holes) with LO-phonons is responsible for the formation
of everlasting resonant polarons, discovered in self-assembled QDs [13], ultrafast energy
redistribution, observed [14] in femtosecond transmission spectra,and the long polaron lifetime
measured in InAs/GaAs QDs [15].

A theory of QDs should include both the electronic and phononic components of the
screening of the electron–electron interaction [16]. In electrostatic QDs [17], the electronic
screening mainly results from the charges induced on the metal gates, which define the physical
QD region. This effect is known as the screening of the electron–electron interaction by the
gates [18]. The second effect is the phonon-induced screening. In a majority of papers, the
phonon screening is taken into account in a static manner by introducing the static dielectric
constant (εs) into the Coulomb interaction potential. When applying the static dielectric
constant, we have to assume the maximal (static) crystal lattice distortion, which leads to
a maximal screening of the interelectron interaction by εs. The maximal screening results
from the formation of the static lattice distortion around each electron, which requires some
relaxation time. The static lattice distortion cannot entirely develop in electron transport
processes, in which the electrons tunnel through the QD on a nanosecond timescale [19].
Therefore, for the description of the interaction of the tunnelling electron with the electrons
confined in the QD, we have to consider the quantum dynamics of the electron–phonon system.
The present paper is devoted to a study of the effective screening of the electron–electron
interaction by the LO phonons. We focus on the LO phonons since they dominate in the
lattice-induced screening in semiconducting compounds due to an ionic character of these
materials. We will show that the LO phonons play an important role both in the strongly ionic
I–VII compounds as well as in the weakly ionic III–V compounds.

The paper is organized as follows: in section 2 we present the theory, in section 3—the
results, and section 4 contains the conclusions and the summary.

2. Theory

We consider a two-electron system localized in a solid due to a presence of a binding centre or
a confining potential. Taking on the binding potential as the Coulomb potential of the positive
donor centre, we deal with the D− centre in a bulk crystal. Assuming the confining potential in
a Gaussian form [20] we obtain a model of spherical QDs [21–23], i.e., nanocrystals fabricated
by a colloidal chemical synthesis [21, 22]. In the present work, we are interested in an effect
of the electron–LO-phonon coupling on the effective interaction between the electrons in the
bound few-electron systems. We start with the Hamiltonian

H = Hel + Hph + Hint, (1)

where Hel is the Hamiltonian of the two-electron system in an absence of LO phonons, Hph is
the Hamiltonian of noninteracting LO phonons,and Hint is the electron–LO-phonon interaction
Hamiltonian. In the effective mass approximation,

Hel = − h̄2

2me
(∇2

1 + ∇2
2 ) + Vconf(r1) + Vconf(r2) +

κe2

ε∞r12
, (2)

where me is the electron conduction band mass, r1 and r2 are the electron–donor centre
(electron–QD centre) distances, r12 is the electron–electron distance, ε∞ is the high-frequency
dielectric constant, and κ = 1/(4πε0), where ε0 is the electric permittivity of vacuum. For
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the D− centre

Vconf(r) = −κe2

εsr
. (3)

Form (3) results from the Platzman transformation [24] of the initial Hamiltonian, in which
all the Coulomb interactions are screened by the valence electrons only, i.e., by ε∞. The
Platzman transformation [24] leads to the screening of the electron–donor interaction by the
static dielectric constant εs, which has the following physical interpretation: the interaction of
electrons with the infinitely heavy positive donor centre involves the static lattice distortion,
i.e., is maximally screened by the lattice and the valence electrons. We expect that the screening
of the interaction between the light electrons should be different.

When applying the present approach to spherical QDs, we assume the confining potential
in the Gaussian form [20], i.e.,

Vconf(r) = −V0 exp[−(r/R)2], (4)

where V0 is the depth of the confinement potential and R is its range (R can be treated
as a radius of the QD). The Gaussian potential (4) accounts for the finite depth and range
of the QD confinement potential. The smoothly varying form given by equation (4) is a
good approximation of the confinement potential in electrostatic QDs [17], in which the
confinement results from an inhomogeneous electric field. In self-assembled QDs [25] with
a composition modulation [26], the confinement potential can also be approximated by the
Gaussian potential [27]. In the present paper, we assume that the electron conduction band
mass, dielectric constants, and LO-phonon frequency are continuous across the QD boundary.
In section 4, we discuss the applicability of these assumptions.

The Hamiltonian of the LO-phonon field has a form

Hph = h̄ωLO

∑

k

a†
kak, (5)

where a†
k (ak) is the creation (annihilation) operator of the LO phonon with wavevector k and

energy h̄ωLO. The Hamiltonian of the electron–LO-phonon interaction can be written down
as follows:

Hint = h̄ωLO

∑

k

{vkak[exp(ik · r1) + exp(ik · r2)] + H.c.}, (6)

where

vk = − i

|k|
[

2πe2

�h̄ωLO

(
1

ε∞
− 1

εs

)]1/2

(7)

is the Frőhlich interaction amplitude and � is the quantization volume.
In order to determine the screening effect of the LO phonons we solve the eigenvalue

problem for the two-electron Hamiltonian (1) by the variational method. For the sake of
completeness, below we present the main steps of the method proposed for the D− centre [7].
This approach is also applicable to the two-electron systems in spherical QDs. We employ the
variational trial state vector in the following form [7]:

|�〉 = ψ(r1, r2)U(r1, r2, {a†
k}, {ak})|0〉, (8)

where ψ(r1, r2) is the wavefunction of the two-electron system and |0〉 is the LO-phonon
vacuum state vector. The unitary transformation U has been taken in the form [7]

U(r1, r2, {a†
k}, {ak}) = exp

{
∑

k

[Fk(r1, r2)ak − F�
k (r1, r2)a

†
k]

}
, (9)
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where

Fk(r1, r2) = vk{ f (1)k [exp(ik · r1) + exp(ik · r2)] + f (2)k }. (10)

Equation (10) contains the weak-coupling, f (1)k , and the strong-coupling, f (2)k , phonon
amplitudes that have the forms [7]

f (1)k = λ1


2
1a2

pk2 + 1
(11)

and

f (2)k = λ2

(
2
2a2

pk2 + 1)2
, (12)

where ap = (h̄/2meωLO)
1/2 is the polaron radius. Phonon amplitudes (11) and (12) include

variational parameters λ1, λ2, 
1, and 
2, for which the following physical interpretation can
be given: parameters λ1 and λ2 determine the contributions of the weak and strong electron–
LO-phonon coupling to the variational solution (equation (8)), while ρ1 and ρ2 are responsible
for the changes of radius of the interacting polarons in the weak- and strong-coupling limits,
respectively. All these variational parameters are determined from the minimization of the
expectation value of Hamiltonian (1). This minimization is considerably simplified if we
introduce the effective Hamiltonian

Heff = 〈0|U † HU |0〉, (13)

which takes on the form [7]

Heff = − h̄2

2me
(∇2

1 + ∇2
2 ) + Vconf(r1) + Vconf(r2) + W (r1) + W (r2) + Veff(r12) + �, (14)

where W (r1) and W (r2) are the phonon-mediated electron–donor (electron–QD) interactions
and � is the self-energy of the electron–phonon system. Their explicit forms are given in [7].

In the present paper,we are interested in the effective electron–electron interaction,defined
in equation (14) as Veff(r12), i.e., the term that explicitly depends on interelectron distance r12.
We neglect the indirect influence of the self-energy on the screening. This effective interaction
can be written down as follows:

Veff(r12) = κe2

εeff(r12)r12
, (15)

where εeff(r12) is the LO-phonon dielectric function of the form [7]

ε−1
eff (r12) = 1

ε∞
+ λ1

(
1

ε∞
− 1

εs

)

×
{
(λ1 − 2)[1 − exp(−r12/
1ap)] − λ1r12

2
1ap
exp(−r12/
1ap)

}
. (16)

Equations (15) and (16) show that the effective electron–electron interaction also includes—
besides the statically screened Coulomb interaction—the Yukawa and exponential interaction
potentials.

Let us discuss the asymptotic properties of effective interaction (15). For r12 → 0,
Veff(r12) → κe2/(ε∞r12), i.e., the LO-phonon screening becomes negligible and the electron–
electron interaction is only screened by the valence electrons. In the bound systems, for
r12 � ap, Veff(r12) → κe2/(ε̄r12), where

1

ε̄
= 1

ε∞
− λ1(2 − λ1)

(
1

ε∞
− 1

εs

)
. (17)
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Figure 1. Effective electron–electron interaction potential energy Veff (solid line) as a function of
interelectron distance r12 for the D− centre in (a) GaAs and (b) AgCl. The Coulomb interaction
energy screened by the static (broken line) and high-frequency (dotted line) dielectric constant is
also shown for comparison.

If r12 → ∞, we deal with the unbound system with the two free polarons, for which—in
the weak electron–LO-phonon coupling regime—the variational parameters in equations (11)
and (12) take on the following optimal values: λ1 = 
1 = 1 and λ2 = 0. In this case, ε̄ = εs,
i.e., the electron–electron interaction is screened by the statically deformed lattice. For the
bound systems we obtain λ1 < 1, which leads to the inequality ε̄ < εs.

In order to obtain the effective LO-phonon-induced screening for the bound two-electron
systems we have calculated the ground-state energy of the considered systems. This allows us
to determine the optimum values of variational parametersλ1, 
1, λ2, and
2, i.e., the optimized
effective interaction (equations (15) and (16)). The ground-state energy has been calculated
by solving the eigenproblem for the effective Hamiltonian (14) with the help of the electronic
variational wavefunction [20]

ψ(r1, r2, r12) =
N∑

j=1

c j (1 + P12) exp(−α j r
2
1 − β jr

2
2 − γ j r

2
12), (18)

where c j are the linear variational parameters and P12 is the permutation operator interchanging
the indices 1 and 2. The nonlinear variational parameters in trial wavefunction (18) have
been chosen as follows: α j = α1q j−1

α , β j = β1q j−1
β , i.e., as the geometric progressions,

and γ j = γ1 + (γ2 − γ1) frac[
√

3 j ( j − 1)/2], i.e., as the quasi-random numbers, where
frac(x) denotes the fractional part of x . Variational wavefunction (18) explicitly includes the
electron–electron correlation via the r12-dependent term. It contains the following independent
variational parameters: α1, β1, γ1, γ2, qα, and qβ . The ground-state energy has been calculated
by minimizing the expectation value of Heff over the variational parameters in the two-electron
wavefunction (18) and phonon amplitudes (11) and (12). We have checked that the trial
wavefunction (18) reproduces the results for D− centres in bulk semiconductors, obtained
previously [7] with the linear combination of correlated exponential functions.

3. Results

3.1. D− centre

Figure 1 shows the LO-phonon screened effective interelectron interaction potential, defined
by equation (15), for the D− centre in the bulk GaAs and AgCl crystals. For all interelectron
distances, Veff(r12) is stronger than the Coulomb interaction potential, screened by the static
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Figure 2. Effective phonon dielectric function εeff as a function of electron–electron distance r12
for the D− centre in AgCl, CdS, and GaAs. Broken horizontal lines correspond to static dielectric
constants εs.

dielectric constant εs, but weaker than the Coulomb interaction screened by the high-frequency
dielectric constant ε∞. In the weakly polar GaAs as well as in the strongly polar AgCl
Veff � κe2/(ε∞r12) at small distances. In GaAs, the effective interaction exhibits the following
asymptotic behaviour for large distances: Veff � κe2/(εsr12). In AgCl, the long-range effective
interaction is always stronger than κe2/(εsr12) (see also figure 2). In both the limits of r12, the
electron–electron interaction becomes purely Coulombic. At the intermediate interelectron
distances the effective interaction energy considerably deviates from the Coulombic form.

The effective dielectric function for the D− centre is plotted in figure 2 for GaAs, CdS, and
AgCl, i.e., for the crystals with weak, intermediate, and strong electron–LO-phonon coupling,
respectively. The energy and length are expressed in the donor units, i.e., donor Rydberg
RD and donor Bohr radius aD, respectively. For GaAs, we take on RD = 5 meV and aD =
10 nm. Figure 2 shows that the phonon dielectric function increases monotonically with the
increasing interelectron separation starting from εeff(0) = ε∞. In the weakly ionic material
(cf the plot for GaAs in figure 2) εeff(r12) quickly increases with increasing r12 and already for
r12 � 1aD reaches the constant value ε̄ (equation (17)). For GaAs ε̄ � εs, which means that
for r12 > 1aD the lattice is fully polarized and the LO-phonon-induced screening is maximal.
Therefore, in GaAs we can approximate the effective dielectric function by εs. For the more
ionic compounds (cf the plots for CdS and AgCl in figure 2), the effective phonon dielectric
function is a slowly varying function of the electron–electron distance, reaching the constant
value, ε̄, at larger distances (r12 � 3aD), and ε̄ < εs. Therefore, the increasing electron–LO-
phonon coupling leads to the weakening of the screening, i.e., the electron–electron repulsion
becomes stronger than in the case of the maximal screening by the lattice. At distances which
correspond to the average separation between the electrons in the D− centre, i.e., 2–4 aD [7], the
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Figure 3. Effective phonon dielectric function εeff versus interelectron distance r12 for the two-
electron QD made of GaAs for the fixed confinement-potential depth V0 = 50RD and several values
of the confinement-potential range R = 1, 2, 5, and 10 aD. Thin horizontal lines correspond to the
high-frequency (ε∞) and static (εs) dielectric constants.

effective dielectric function can be approximated by the constant ε̄. We note that the stronger
electron–electron repulsion is accompanied by the stronger electron–donor attraction, which
is also due to the LO phonons [7].

3.2. Two-electron quantum dot

The results for the two-electron spherical QD with Gaussian confinement potential (4) are
shown in figures 3–6. Figure 3 displays the effective phonon dielectric function for the GaAs
QD with the fixed confinement-potential well depth and varying QD radius. The plots of εeff

versus r12 for the fixed radius of the QD made of GaAs and varying potential-well depth are
depicted in figure 4.

Figures 3 and 4 show that the effective dielectric function rapidly increases for small
interelectron distances and reaches the constant ε̄ already at r12 � 1 aD. This behaviour
is similar to that for the D− centre in GaAs (cf figure 2). For fixed V0 ε̄ increases with the
increasing QD radius (cf figure 3), while for the fixed QD radius ε̄ decreases with the increasing
potential-well depth (cf figure 4). For the majority of QD parameters ε̄ is smaller than the
static dielectric constant εs and approaches εs for the large QDs (cf the plot for R = 10aD

in figure 3) and the shallow confinement potential (cf the plot for V0 = 10RD in figure 4).
For the large QDs and the weak confinement potential we approach the bulk crystal limit, i.e.,
the effective phonon dielectric function becomes similar to that for the D− centre in the bulk
GaAs (cf figure 2). For the stronger quantum confinement we observe considerable deviations
from this bulk-crystal-like behaviour (cf the plots in figure 3 for small R and in figure 4
for large V0). Therefore, the increasing quantum confinement leads to the weakening of the
LO-phonon-induced screening of the electron–electron repulsion in QDs.
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Figure 4. Effective phonon dielectric function εeff versus interelectron distance r12 for the two-
electron QD made of GaAs for the fixed confinement-potential range R = 2aD and several values
of the confinement-potential depth V0 = 10, 20, 50, and 100 RD. Thin horizontal lines correspond
to the high-frequency (ε∞) and static (εs) dielectric constants.

The explicit formula for the effective dielectric function (equation (16)) contains the
variational parameters, which modify the shape of phonon amplitudes (11) and (12). In the
present paper, we have determined their values by minimizing the two-electron ground-state
energy. Figure 5 shows the dependence of these variational parameters on the QD radius for
the fixed confinement-potential-well depth in the QD made of GaAs. For large R, i.e., in
the bulk crystal limit, λ1 → 1, 
1 → 1, and λ2 → 0, which means that the weak-coupling
phonon amplitude (11) tends to that characterizing the free polarons in the bulk crystal [28],
while the strong-coupling phonon amplitude (equation (12)) vanishes. For λ1 � 1: ε̄ < εs

(cf equation (17)), i.e., the average screening of the electron–electron interaction is weaker
than the screening corresponding to the static distortion of the crystal lattice.

The interaction with LO phonons modifies the energy of electron systems confined in
QDs. Figure 6 displays the ground-state energy calculated for the one- and two-electron
systems confined in the spherical QDs made of GaAs, CdS, and AgCl as a function of the
radius. The ground-state energy of the single electron confined in the QD is denoted by E (1)

and the ground-state energy of the two electrons confined in the QD by E (2). The binding
energy W of the two-electron system confined in the QD is defined as W = E (1) − E (2) [20].
Figure 6 shows that the binding energy increases with increasing radius of the QD. For small
QDs the one- and two-electron systems are not bound (cf the flat parts of the curves below
R � 0.5aD). In each group of curves, corresponding to E (1) and E (2), the upper (solid)
curve shows the results for the elemental semiconductors, for which the electron–LO-phonon
coupling vanishes. The coupling with the LO phonons lowers the ground-state energy of the
electron systems confined in the QDs. The results for GaAs, CdS, and AgCl, i.e., for the
materials with the weak, intermediate, and strong electron–LO-phonon coupling, show that
the stronger the coupling with phonons the larger the lowering of the ground-state energy.
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Figure 5. Variational parameters λ1 (solid line), λ2 (broken line), ρ1 (dotted line), ρ2 (dash–dotted
line) as functions of confinement-potential range R for V0 = 50RD for the two-electron QD made
of GaAs.

Figure 6 also shows that the binding energy increases with the increasing electron–phonon
coupling.

4. Conclusions and summary

The results for QDs presented in section 3.2 have been obtained under the assumption that
the material parameters, which determine the electron–phonon system, do not change across
the QD boundary. This assumption can be justified in the electrostatic QDs [29], in which the
lateral confinement of electrons in the QD is caused by the external inhomogeneous electric
field. In the electrostatic QDs, the QD region is made of the same material as its nearest
environment in the lateral directions. However, in the vertical direction, there appear the
heterojunctions, at which the material properties can change discontinuously [29]. In the self-
assembled QDs [25] we deal with relatively sharp heterojunctions, which lead to a formation of
the interface and confined phonons. However, in the self-assembled QDs with a compositional
modulation (alloying) [26] the material parameters smoothly change across the QD boundary
and the boundary region is spread over several lattice constants. For the QDs with the smoothly
varying composition the present results may have a qualitative meaning. Nevertheless, in
a quantitative description of the screening we have to include the interface effects and the
anisotropy of the nanostructure.

The energy of the electron–LO-phonon system depends on the self-energy
(cf equation (14)). This dependence enters into the expectation value of Hamiltonian (14)
calculated with the wavefunction of the electronic state considered. Throughout the present
paper, we study the ground state, for which the influence of the self-energy on screening
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Figure 6. Ground-state energy of the one-electron (E(1)) and two-electron (E(2)) QDs made of the
non-ionic semiconductor, e.g., Si, Ge (solid line), GaAs (broken line), CdS (dash–dotted line), and
AgCl (dotted line) as a function of confinement-potential range R for fixed confinement-potential
depth V0 = 10RD. W denotes the binding energy of the two-electron QD.

is fixed and independent of the electron–electron distance. This justifies the neglect of the
influence of the self-energy on the screening. In the present work, we focus on the phonon
screening; therefore, we neglect the image charges, which mainly exert the effect on the
electronic screening. It was shown [30] that the image charges do not affect the electron–bulk-
phonon interaction. However, the image charges can change the energy of polarons [30].

The results of the present calculations can hardly be compared with the existing
experimental data, since we did not find any experimental results from which we can extract
the binding energy of few-electron systems confined in QDs made of different polar materials.
In the recent experiments [13–15, 31] with QDs the effect of the electron–LO-phononcoupling
has been studied for the one-electron states only. The binding energy of the two-electron QD
is equal to the absolute value of the chemical potential, which can be measured by the transport
spectroscopy [29].

Despite some similarity of both the two-electron systems studied, i.e., the D− centre in the
bulk crystal and the two-electron system confined in the QD, there exists an essential difference
between them, which results from the large difference in the binding energy. For the D− centre
in the bulk GaAs crystal W � 0.05RD, i.e., this two-electron system is very weakly bound. In
contrast, the binding energy of the two-electron QD is of the order of the potential-well depth
V0, e.g., W � 10RD for V0 = 10RD (cf figure 6), i.e., the two-electron QD is strongly bound.
This leads to the qualitatively different behaviour of the phonon dielectric function obtained
for both the two-electron systems. For example, for GaAs the average screening constant, ε̄,
for the D− is different from that for the two electrons in the QD (cf figures 2, 3, and 4). We
have also performed calculations for the QDs with the very weak confinement potential and
obtained results which are similar to that for the D− in the bulk crystal. Let us note that for
R → 0 we also approach the bulk crystal limit. However, if the QD size is too small, the
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electrons do not form the bound states in the QD (cf figure 6) and the present approach to the
phonon dielectric screening is not applicable.

The results of the present paper show that—in the bound two-electron systems—the LO-
phonon-induced screening of the electron–electron interaction becomes weaker if the electron–
LO-phonon coupling increases and/or the quantum confinement of the electrons increases.
This weakening of the screening results from the enhancement of the binding, which occurs
for the stronger electron–phonon coupling and the stronger confinement. In the strongly bound
systems, the average interelectron separations are small [7],which leads to a partial cancellation
of the virtual phonon clouds associated with each electron, which in turn causes the weaker
screening of the interelectron interaction by the induced lattice polarization.

In summary, we have shown that—in the bulk crystals as well as in the QDs—the LO-
phonon-induced screening of the electron–electron interaction can be described by the effective
dielectric function, which is a monotonically increasing function of the interelectron distance.
In the QDs, the effective dielectric function already at relatively small electron–electron
separations reaches the constant value, ε̄, which however is usually smaller than the static
dielectric constant, εs. The average dielectric constant ε̄ can be treated as a useful quantity
that determines the LO-phonon screening of the interelectron repulsion in the bound few-
electron systems. In the QDs, ε̄ becomes equal to εs only if the quantum confinement is weak.
Moreover, the electron–LO-phonon coupling leads to the enhancement of the binding of the
two-electron systems confined in the QDs made of the ionic materials.

Acknowledgments

The authors are grateful to S Bednarek for fruitful scientific discussions. This work has been
supported in part by the Polish Government Scientific Research Committee (KBN).

References

[1] Devreese J T 1996 Encyclopedia of Applied Physics vol 14 (New York: VCH) p 383
[2] Hiramoto H and Toyozawa Y 1985 J. Phys. Soc. Japan 54 245
[3] Adamowski J 1989 Phys. Rev. B 39 3649
[4] Bassani F, Geddo M, Iadonisi G and Ninno D 1991 Phys. Rev. B 43 5296
[5] Verbist G, Peeters F M and Devreese J T 1991 Phys. Rev. B 43 2712
[6] Armistead C J, Najda S P and Stradling R A 1985 Solid State Commun. 53 1109
[7] Adamowski J 1989 Phys. Rev. B 39 13061
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