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Anisotropic quantum dots: Correspondence between quantum and classical Wigner molecules,
parity symmetry, and broken-symmetry states
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We study electron systems confined in anisotropic quantum dots at high magnetic fields using the
configuration-interaction scheme with a multicenter basis of single-electron functions centered around different
sites. Elliptical, triangular, and square quantum dots are investigated. We study the relation between the
quantum and classical charge density and conclude that at high magnetic field the quantum charge density
reproduces all the equivalent lowest-energy configurations of classical point charges. Quantum systems with a
classical counterpart of a unique lowest-energy configuration exhibit a smooth convergence of the charge
density to the classical limit at high magnetic field. In quantum systems with several equivalent classical
configurations the magnetic field induces discontinuous transformations of the ground-state symmetry associ-
ated with crossings of the corresponding few-electron energy levels. A linear combination of states with the
crossing levels yields a semiclassical charge density with a broken symmetry. At the magnetic field corre-
sponding to the level crossing this combination is an exact eigenstate of the Hamiltonian. For circular dots the
present findings give an additional insight into the properties of the magic-angular-momenta states and into the
physics behind the broken-symmetry mean-field solutions.

DOI: 10.1103/PhysRevB.69.125344 PACS number~s!: 73.21.2b, 73.22.Gk
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I. INTRODUCTION

Quantum dots1 provide a convenient testing ground fo
studying electron localization in potentials which can be, t
certain extent, formed at will by proper etching techniques
chosen geometry of the applied gate electrodes. One o
most interesting problems in this field is the Wigner cryst
lization of the electron system induced by a high magne
field. The problem of Wigner crystallization in cylindrica
quantum dots2–4 has been widely discussed and at pres
seems to be well understood both quantum mechanically
classically.5 Wigner crystallization, i.e., the separation
electrons, in cylindrically symmetric potential appears in t
inner coordinates of the system and the charges of sep
electrons are not distinguishable in the rotationally invari
electron density. Therefore, in cylindrical quantum do
methods6 based on charge-density measurements are no
propriate for the observation of Wigner crystallization. Ho
ever, such an approach is possible in structures of lower s
metry. Previous exact diagonalization studies of a thr
electron system in a triangular quantum dot7 and of a system
of six electrons in an elliptical quantum dot8 showed that
Wigner crystallization can be observed in the charge-den
distribution of the electrons in the laboratory frame. Mor
over, an exact study of the two-electron system has b
presented9 for triangular, square, and hexagonal quant
dots in the absence of a magnetic field and in an elliptical
at zero magnetic field.10 Wigner crystallization of few-
electron systems in large polygonal quantum dots in the
sence of an external magnetic field was studied us
density-functional theory.11–13 This theory was also applie
to evaluate the addition spectra in elliptical quantum dot14

The addition spectra of elliptical dots have been studied w
Hartree-Fock method15 as well. The effect of pinning of the
0163-1829/2004/69~12!/125344~15!/$22.50 69 1253
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Wigner molecule by a Gaussian impurity perturbation in
isotropic confinement potential was recently studied by
quantum Monte Carlo approach.16,17

In this paper we perform a detailed study of the cha
density of two-, three-, and four-electron systems confined
anisotropic potentials using an exact diagonalization
proach. We consider elliptical, square, and triangular sha
quantum dots and investigate the magnetic-field-indu
Wigner crystallization. A relation between the quantum a
classical charge distributions in anisotropic structures18 is
found. In particular we discuss the high-magnetic-field b
havior of quantum systems whose classical counterparts
sess several equivalent lowest-energy configurations.

A lot of attention was paid2,3 to the problem of the se
quence of the ground-state angular momenta after the m
mum density droplet19 ~MDD! breakdown in cylindrical
quantum dots. The magnetic field increases the abso
value of the angular momentum of the confined electron s
tem, but only certain angular momenta with magic quant
numbers2,3,20–22are realized. For the magic angular momen
the classical symmetry is reproduced in the inner coordina
of the quantum system2 and the electron-electron interactio
energy as a function of the angular momentum presents l
minima.23 At the end of this paper we point out a relatio
between the magic angular momenta and the charge de
in the laboratory frame. We also consider the magnetic-fie
induced parity transformations in elliptical dots which a
less thoroughly studied counterparts of the angu
momentum transitions appearing in circular dots.

To discuss the charge-density distribution the applicat
of an exact diagonalization method is crucial since me
field approaches may lead to an artifactal breaking of
symmetry of the confinement potential.3 The broken-
symmetry solutions present a semiclassical type of local
tion. On the other hand we found24 recently that in the
©2004 The American Physical Society44-1
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strictly infinite magnetic-field limit the energy of the broke
symmetry solution with semiclassical localization becom
equal to the energy of the exact solution. In this paper
study the realistic case of high but finite magnetic fields a
extend our previous work to anisotropic confinement pot
tials. In particular, we reconsider the problem of the symm
try breaking at the exact diagonalization level and dem
strate that a construction of the exact broken-symme
solution of the few-electron Schro¨dinger equation is possibl
for certain values of the magnetic field.

Some of the previous studies of Wigner crystals25–27 and
Wigner molecules23,24,28,29used a multicenter basis of th
single-electron lowest-Landau-level functions. Howev
these calculations23–29 used Hartree-Fock or similar ap
proaches. In the present paper, we use the single-elec
multicenter basis for the construction of the configuratio
interaction approach which allows for an exact solution
the Schro¨dinger equation for few-electron systems confin
in potentials of arbitrary symmetry. This approach is a g
eralization of the single-configurational multicenter Harte
Fock ~MCHF! method24,29 which we elaborated previously.

The paper is organized as follows. The second sec
describes the multicenter-configuration-interaction method
applied in this paper as well as presents test calculations
circular dots. Sections III, IV, and V contain discussion
results obtained for elliptical, square, and triangular dots,
spectively. The conclusions reached for lower-symme
structures are discussed in the context of circular dots in S
VI. Summary and conclusions are given in Sec. VII.

II. MULTICENTER-CONFIGURATION-INTERACTION
METHOD

We considerN electrons confined in a two-dimension
(x,y-plane! quantum dot subject to a strong external ma
netic field oriented parallel to thez axis. We solve the
N-electron Schro¨dinger equation with the Hamiltonian

H5(
i 51

N

hi1(
i 51

N

(
j . i

N
k

r i j
1BSzg* mB , ~1!

whereh stands for the single-electron Hamiltonian,

h5
1

2m*
~2 i\“1eA!21V~x,y!, ~2!

g* is the effective Lande´ factor, Sz the z component of the
total spin,B the magnetic field,mB stands for the Bohr mag
neton,k5e2/4pe0e, e is the dielectric constant andm* the
electron effective mass. We use the Landau gaugeA
5(2By,0,0) and adopt material parameters for GaAs, i
m* /m050.067,e512.9, andg* 520.44.

We assume complete spin polarization of the electron s
tem by the external magnetic field. The multicent
configuration-interaction~MCI! scheme is constructed in th
following way. First we diagonalize the single-electro
Hamiltonian~2! in a multicenter basis
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Cm~r !5(
i 51

M

ci
mcRi

~r !, ~3!

with

cR~r !5A a

2p
expH 2

a

4
~r2R!21

ib

2
~x2X!~y1Y!J ,

~4!

whereM>N is the number of centersR5(X,Y). Next, the
N-electron Hamiltonian~1! is diagonalized in a basis o
M !/N!( M2N)! Slater determinants constructed from th
single-electron orthonormal eigenvectorsCm ~3! with m
51, . . . ,M . The position of the centersRi , a, and b are
nonlinear variational parameters optimized for the total
ergy of theN-electron system. For three or more centers
electron the optimal value of the parameterb tends toeB/\.
At high magnetic field the parametera also takes this value
independently ofM. For a5b5eB/\ the wave function~4!
is the lowest-Landau-level eigenfunction.

The flexibility of the single-electron basis was verified f
an isotropic parabolic potentialV(x,y)5m* v2(x21y2)/2,
with \v53 meV. Solid lines in Fig. 1 show the magneti
field dependence of the single-electron spectrum calcula
with the trial wave function~3! with ten centers located a
the circumference of a circle with equal angular spacings
the 11th center located at the origin. The radius of the cir
was optimized variationally. The dots in Fig. 1 show t
exact Fock-Darwin energy levels corresponding to the low
band which at high magnetic field converges to the low
Landau level. The crosses mark the energies of the hig
Fock-Darwin bands. The present calculations with wa
function ~3! reproduce the exact single-electron spectr

FIG. 1. The single-electron spectrum calculated with the t
wave function~3! for an isotropic quantum dot with\v53 meV
~solid lines!. Eleven centers have been used, one located at
origin and the others at the circumference of a circle with variati
ally optimized radius. Symbols show the exact Fock-Darwin ene
levels corresponding to the lowest~dots! and higher bands
~crosses!. The dotted line shows the estimate for the ground-st
energy obtained when the center located at the origin is exclu
from the basis.
4-2
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ANISOTROPIC QUANTUM DOTS: CORRESPONDENCE . . . PHYSICAL REVIEW B 69, 125344 ~2004!
with a high precision. It is interesting to note that the ba
~3! constructed of the displaced lowest-Landau-level wa
functions ~4! reproduces also higher Fock-Darwin band
Since we are using the Landau gauge the single-elec
wave functions~3! are not eigenfunctions of the angula
momentum operator. However, for all the plots presented
Fig. 1, the expectation values of the angular momentum
culated for the wave functions~3! reproduce exactly the cor
rect eigenvalues.

The exact ground Fock-Darwin state wave function p
sesses the form~4! with X5Y50. The dotted line in Fig. 1
shows the variational estimate of the ground-state energy
tained when the center at the origin is excluded from
basis. The related overestimation of the ground-state en
is nonzero only at low magnetic field (B&2.2 T). We have
found that the center located at the origin has no influence
the energy estimates for the single-electron states with n
zero angular momentum. Its contribution to the energy of
exciteds states tends to zero at higher magnetic field si
larly as for the ground state.

We have performed further tests for the isotropic h
monic confinement potential in order to verify the reliabili
of the present configuration-interaction approach to the f
particle states at high magnetic field. The results were c
pared with the standard exact diagonalization method wi
basis constructed from the Fock-Darwin states of defin
angular momentum.24,30 The reference method24,30 assumes
neither spin polarization nor the occupation of the low
Landau level and forN<4 allows for nearly exact evaluatio
of the total energy.

Figure 2~a! shows the comparison of the exact total ang
lar momentum of the three-electron system and the expe
tion values obtained with the MCI wave function for vario
number of centers placed on a circumference of a circle w
equal angular spacings. The plot starts forB53 T for which
the ground state is the spin-polarized MDD.19 The MDD
decays atB54.6 T @cf. black dots in Fig. 2~a!# to a nonpo-
larized state with angular momentum25\. For B.5.4 T
the ground state of the three-electron system is spin po
ized. Then, the angular momentum takes the ma
values2,3,20–22and changes by 3\ as the magnetic field in
creases.

The present method withM5N uses only a single con
figuration and at high magnetic field is equivalent to t
multicenter HF method.29 For M5N53 the MCI method
reproduces the angular momentum of the MDD state@cf.
squares in Fig. 2~a!#. After the MDD decay, the expectatio
value decreases linearly withB in contrast to the exact step
wise decrease. The MCI method with six centers reprodu
also the exact angular momentum of the first spin-polari
state after the MDD decay, and at higher magnetic field
starts to decrease linearly withB. For M512 the MCI
method yields correct expectation values of the angular
menta of all spin-polarized states in the entire conside
range of magnetic fields.

Let us now discuss the convergence of the energy e
mates obtained with the MCI method to the exact grou
state energy@cf. Fig. 2~b!#. The overestimation of the exac
energy with a single configuration@M5N53, cf. the upper-
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most curve of Fig. 2~b!# is a nonmonotonous function ofB.
The oscillations are due to the fact that the energy estim
of MCI with M5N is a smooth function ofB, while the
exact energy exhibits cusps at these values ofB for which the
ground-state angular momentum changes. The envelop
these oscillations decreases to 0 in the infinite magnetic-fi
limit.24 Introduction of six centers reduces the overestimat
of the total energy as long as the total angular momentum
reproduced by the MCI method withM56 @cf. dashed line
in the upper panel of Fig. 2~a!#. At higher magnetic field, for
which the overlaps of functions~4! centered around differen
sites vanish, the precision of the MCI method withM56
deteriorates to the one obtained withM53, i.e., to the
MCHF method.29 The method withM59 ~12! centers gives
the exact energy to a precision better than 0.15 meV~0.05
meV! for 5.4,B,20 T, i.e., in the studied range of mag
netic field after the MDD breakdown for which the adopt
assumption of spin polarization is fulfilled. Results of simil
test calculations forN52 and 4 show that the correspondin
upper bounds for the precision of the MCI method with thr
centers per electron (M /N53) equal 0.1 and 0.12 meV, re
spectively.

Figure 3 shows the charge density of the three-elect
system atB56 T for three, six, and nine centers. In th
single-configuration charge density (M53) the circular

FIG. 2. ~a! Exact total angular momentum of the ground state
the three-electron system confined in an isotropic quantum dot
\v53 meV and the expectation values for the multicent
configuration-interaction wave functions using various number
centers.~b! The overestimation of the total three-electron ener
with the multicenter approach for different number of centers.
4-3
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SZAFRAN, PEETERS, BEDNAREK, AND ADAMOWSKI PHYSICAL REVIEW B69, 125344 ~2004!
symmetry of the external potential is broken. For six cent
the cylindrical symmetry is approximately restored, althou
at a closer inspection the sixfold symmetry—a trace of
choice of centers—can be noticed. ForM59 the charge den
sity shows a perfect cylindrical symmetry. The present
merical method restores the cylindrical symmetry in a m
ner alternative to the rotated-electron-molecule approac
Yannouleas and Landman.23

We conclude that the single-electron wave functions~3!
used in the present MCI approach work similarly as
Fock-Darwin functions with definite angular momentum~cf.
Figs. 1 and 2!. At high magnetic fields the precision of th
MCI method is not worse than the MCHF method29 which in
turn gives exact results in the infinite magnetic-field limit24

The applicability of the present configuration-interaction a
proach is not limited to cylindrically symmetric potential
The MCI method allows for a flexible choice of the positio
of centers which can be tailored to any smooth external
tential of arbitrary profile and symmetry.

III. ELLIPTICAL QUANTUM DOT

A. Wigner crystallization

In this section we applied the MCI method to analy
Wigner crystallization in elliptical quantum dots with anis
tropic parabolic potentialV(x,y)5m* (vx

2x21vy
2y2)/2 with

vy.vx . Calculations were performed withM512 centers
put on an ellipse symmetric with respect to thex andy axes
with equal angular spacings.

Figure 4 shows the calculated charge densities for tw
three-, and four-electron systems at different magnetic fie
~the energies obtained are listed in Table I!. The lowest panel
shows the position of the classical point charges in
lowest-energy configurations. The classical two- and fo
electron systems in the studied potential possess a un
lowest-energy configuration. On the other hand the class
system of three electrons possesses two equivalent con
rations~marked by ‘‘black’’ and ‘‘white’’ symbols in the low-
est panel of Fig. 4!. Existence of several equivalent classic
configurations will be referred to asclassical degeneracy.

At relatively low magnetic field~4 T! the electron puddles
look very similar and exhibit two maxima at their left an
right ~x! ends. ForB58 T the electrons in the two- an
four-electron systems start to become spatially separated
higher magnetic field the electron charge densities forN
52 and 4 tend to the charge distributions of their class

FIG. 3. MCI charge density obtained for the three-electron s
tem with differentM for \v53 meV andB56 T. The darker the
shade of gray the larger the electron density.
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counterparts~cf. lowest panel of Fig. 4!, which results from
the shrinkage of the Landau radius with growing magne
field. ForB58 T a central hole in the three-electron char
density appears. The plots of the three-electron charge
sities for 12 and 20 T~cf. Fig. 4! show an appearance of tw
smaller maxima of the charge density along they axis. This
is shown more clearly in Fig. 5 for the three-electron cha
density atB530 T. The two charge maxima at thex ex-

-

FIG. 4. Charge density of two-, three-, and four-electron s
tems for an anisotropic parabolic potential with\vx53 meV and
\vy54 meV for different magnetic fields. The lowest panel pr
sents the lowest-energy configurations of the classical point-ch
systems. ForN53 the two energy-equivalent configurations a
marked with full and open circles.

TABLE I. Total energy of theN-electron systemEN ~in meV!
confined in an anisotropic parabolic potential with\vx53 meV
and\vy54 meV.

B(T) E2 E3 E4

4 15.35 30.33 49.29
8 20.99 39.02 60.71
12 27.20 48.20 72.94
16 33.71 58.04 85.95
20 40.33 67.95 99.29
4-4
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ANISOTROPIC QUANTUM DOTS: CORRESPONDENCE . . . PHYSICAL REVIEW B 69, 125344 ~2004!
tremities of the charge puddle are spread out along thy
direction into two distinct maxima. The results of Figs. 4 a
5 show that the density distribution for the system of th
electrons at high magnetic field tends to a linear combina
of the two distributions of the degenerate classical confi
rations~cf. the lowest panel of Fig. 4!.

Evidence of Wigner crystallization in the four-electro
charge density is not always as apparent as in the case s
in Fig. 4. The left panel of Fig. 6 displays the charge dens
of the four-electron system atB520 T for \vx53 meV and
different \vy . The right panel of the figure shows the co
responding configurations of the classical system.18 The clas-

FIG. 5. Charge density of the three-electron system for an
isotropic parabolic potential with\vx53 meV, \vy54 meV, and
B530 T.

FIG. 6. Left panel: Charge density of the four-electron system
B520 T for \vx53 meV and different values of\vy . Right
panel: Classical lowest-energy configurations. For\vy55.5 and
6 meV two equivalent configurations are marked with differe
symbols.
12534
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sical system possesses a single lowest-energy configur
for 3 meV,\vy&5.1 meV with electrons situated along th
x and y axes. For\vy larger than 5.1 meV the electron
leave the axes and as a consequence two equivalent con
rations appear. As\vy is increased further the classical ele
trons become localized on thex axis and the classical degen
eracy is removed. Note that the classical system exhibi
zigzag transition as discussed in more detail in Ref. 18. T
classical configurations and the quantum charge distribu
~cf. left panel of Fig. 6! are clearly related. In the absence
classical degeneracy (\vy55 and 9 meV! the quantum
charge density possesses four nearly equal maxima loca
close to the positions of the classical electrons in equi
rium. The plot for \vy59 meV represents a nearly one
dimensional case of a Wigner molecule,31 in which the
charge maxima at the ends of the puddle are slightly m
pronounced than the maxima in its interior. A trace of t
classical degeneracy for\vy56 meV in the quantum charg
density is the elongation of the central maxima in they di-
rection. These central maxima for\vy55.5 meV merge into
a single ringlike plateau with a hole in the center. For th
special case the separation of electrons is not complete, s
the charges of the two central electrons occupy the sa
island. We have found that in this case the separation of
two electrons cannot be observed even in the pair-correla
function2 plots. Therefore, the four-electron system in th
potential forB520 T presents an interesting case ofpartial
Wigner crystallization.

B. Parity symmetry

Let us now consider the spatial symmetry of the fe
electron wave function in an elliptical dot. In an anisotrop
confinement potential the angular momentum is no lon
quantized. However, the wave functions of the few-elect
systems in an elliptical dot have a definite parity with resp
to the rotation byp angle. In cylindrical quantum dots th
parity of the states is even~odd! if the angular momentum is
an even~odd! multiple of \. The MDD states for two, three
and four electrons have angular momentum equal to2\,
23\, and26\, respectively. Therefore, the two- and thre
electron MDD states are of odd parity and the four-elect
MDD state is of even parity. At magnetic fields above t
MDD breakdown the angular momentum of the ground st
takes the magic values2,3,20–22and changes byN\. As a con-
sequence the two- and four-electron systems in the M
state and after its decay possess always the same parity~odd
for N52 and even forN54), while for three electrons the
parity changes with each ground-state transformation.

Solid lines in Fig. 7~a! show the two lowest-energy two
electron levels in the magnetic-field range corresponding
the MDD decay in a circular quantum dot. The display
energyE8 is calculated with respect to the lowest Land
level, i.e., E85E2N\(vc1Szg* mBB)5E20.85(meV/T)
3NB. The two-electron MDD decays atB55.75 T as the
energy of the state with angular momentum23\ crosses the
MDD energy level withL52\. The dashed lines presen
the magnetic-field dependence of the two lowest levels
an elliptical quantum dot with\vx53 meV and \vy

n-

t

t
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53.125 meV. Instead of a level crossing we observe
avoided crossing. The avoided crossing is due to the fact
the states involved are of the same odd parity. A sim
avoided crossing related to the MDD decay in elliptical d
is observed for four electrons@cf. Fig. 7~b!#. Both the energy
levels presented in Fig. 7~b! correspond to even parity state
For both N52 and 4, further avoided crossings appear
higher magnetic fields. In the harmonic ellipsoidal quant
dot the center-of-mass motion separates from the rela
motion eigenproblem.32 If the energy levels involved in the
avoided crossing corresponded to different center-of-m
states, the level crossing would still be observed in spite
the same parity of the considered few-electron states.
appearance of the avoided level crossings forN52 and 4
indicates that these levels are associated with the s
~ground! state of the center of mass. In the two-electron s
tem the energy gaps between the anticrossing energy le
@DE, cf. Fig. 7~a!# for the same degree of anisotrop
(vy /vx) are about four times larger than in four-electr
systems. The extent to which the anisotropy mixes
magic-angular-momenta states of circular dots is a distin
decreasing function of the differences of their angular m
menta (N\). The appearance of the avoided crossings
function of the anisotropy of the elliptical confinement
absence of a magnetic field has been discussed for an
tron pair in Ref. 10.

The magnetic-field-induced ground-state transformati
in the circular quantum dots are accompanied by cusps in
energy as a function of the magnetic field and stepw
changes of the angular momentum. Moreover, they app
along with discontinuous changes of the average size of
system,30 the electron-electron interaction energy,29 and
abrupt transformations of the charge density. When
energy-level crossing is replaced by an avoided cross
~like in two and four elliptically deformed dots! the changes
of physical quantities lose their sharp character and bec
continuous. As an illustration, a plot of the interaction ene
in the two-electron system is presented in Fig. 8~a! for cir-
cular ~solid line! and elliptical~dashed line! quantum dot. In
the circular dot the interaction energy grows with magne
field between the ground-state transformations which are

FIG. 7. Two lowest-energy levels of two~a! and four~b! elec-
trons for\vx53 meV calculated with respect to the lowest Land
level as functions of the magnetic field.
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companied by a stepwise decrease of this quantity. The
teraction energy for the two-electron elliptical dot present
smooth dependence on the magnetic field@cf. dashed line in
Fig. 8~a!#. In circular quantum dots the sharp breakdown
the MDD is related with a level crossing leading to a sudd
increase of the electron-electron correlation30 and formation
of a molecular configuration in the inner coordinates of t
quantum system.2,3,29,30In the presence of the avoided cros
ings the formation of the Wigner phase becomes a cont
ous process.

In the three-electron system confined in an elliptical d
the magnetic-field-induced level crossings are still pres
because, like in circular dots, the subsequent ground st
possess opposite parities. Figure 9 shows the two low
energy levels as function of the magnetic field. One of
two lowest-energy levels corresponds to the odd-parity s
~solid line! and the other to the even-parity state~dashed

FIG. 8. Expectation value of the electron-electron interact
energy in the two-electron system~a! and of the angular momentum
~b! in the three-electron circular (\vx5\vy53 meV—solid lines!
and elliptical (\vx53, \vy53.5 meV—dashed lines! quantum
dot.

FIG. 9. Two lowest-energy levels of a three-electron elliptic
dot (\vx53 meV, \vy54 meV) calculated with respect to th
lowest Landau level. The energy level plotted with solid~dashed!
line corresponds to the state of odd~even! parity. Dotted line shows
the expectation value of the energy for the broken-symmetry s
@cf. Sec. III C and Eq.~5!#. The inset presents half the energy spa
ing between the two energy levels, i.e., the energy overestima
by the expectation value of the Hamiltonian calculated for
broken-symmetry state~cf. Sec. III C!. Signs ‘‘2 ’’ and ‘‘ 1 ’’ corre-
spond to odd and even parity of the ground state, respectively.
4-6
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ANISOTROPIC QUANTUM DOTS: CORRESPONDENCE . . . PHYSICAL REVIEW B 69, 125344 ~2004!
line!. In the three-electron elliptical dot the changes of phy
cal properties conserve their stepwise character as func
of the magnetic field due to the parity transformations. F
ure 8~b! shows the expectation value of the angular mom
tum for the three-electron system. Although, the angular m
mentum in an elliptical dot is not quantized, its expectat
value presents discontinuous changes. For higher value
vy the angular momentum is quenched to zero as the c
finement potential starts to resemble a quasi-one-dimensi
wirelike dot.

Figure 10 shows the phase diagram for the parity of
spin-polarized three-electron system as a function of
strength of they confinement and the magnetic field fo
\vx53 meV. The ground state is of even parity in the ce
tral region bounded by the solid line and marked by the ‘‘1 ’’
sign. The left vertical dashed line corresponds to circu
symmetry of the confinement potential. The changes in
charge density occurring at the crossing of the border
tween the odd and even phases along this line are illustr
in Fig. 11. The upper panels of Fig. 11 show the cha
density ~left panel! and the pair-correlation function~PCF!
~right panel! corresponding to the MDD phase in the poi
marked by ‘‘A’’ in Fig. 10. The lower panels correspond t
the point marked by ‘‘B’’ in Fig. 10. Results of Fig. 11 show
that the MDD decay is accompanied by the formation o
hole in the charge-density center33 and a distinct growth of
the electron separation in the inner coordinates presente
the PCF plots. Figure 12 displays the charge density and
PCF plots at the crossing of the border between the odd-
even-parity phases for elliptical dot with\vy54 meV ~cf.
the points marked by ‘‘C’’ and ‘‘ D ’’ in Fig. 10!. The charge
density in the even-parity ground state has a hole in the c
ter, similarly as for the even-parity state in the cylindrical d
~cf. Fig. 11!. An increase of the electron-electron correlati
appearing at the crossing of the borders between the ph

FIG. 10. Phase diagram for the parity of the three-electron s
polarized ground state in an elliptical quantum dot for\vx

53 meV. The parity is even in the region marked by a plus s
bounded by the solid line and odd outside of it. The dotted l
shows the position of the avoided crossing of the lowest two o
parity energy levels. The insets show schematically the qualita
picture of the charge density in the different phases. For the ver
dashed lines and the symbols, see text.
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also resembles a similar effect appearing in circular dots~cf.
right panel of Fig. 12!. The charge-density plot for the sam
phase at a higher magnetic field (B58 T—point ‘‘E’’ in Fig.
10! was presented in Fig. 4. A qualitative change in t
charge density is observed at higher magnetic fields when
next phase border is crossed. In the odd phase above
border, the two local maxima of the charge density appea
the y axis ~cf. Fig. 4 for B512 T and N53). At higher
magnetic field the charge density tends to reproduce both
degenerate classical configurations~cf. discussion of Fig. 4!.

Figure 10 shows that with increasing anisotropy of t
confinement the even-parity phase is pushed to higher m
netic fields and finally for\vy.4.4 meV it is eliminated

-

n
e
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e
al

FIG. 11. Charge density~left panel! and PCF~right panel! plots
for the three-electron system confined in a circular dot (\vx

5\vy53 meV) in the MDD phase~upper panel cf. point marked
by ‘‘ A’’ in Fig. 10! and in the ground state withL526\ appearing
at higher magnetic field~lower panel cf. point marked by ‘‘B’’ in
Fig 10. The position of one of the electrons in the PCF plot mark
by 3 is fixed at pointx50, y521 nm.

FIG. 12. Charge density~left panel! and PCF~right panel! plots
for the three-electron system in an elliptical dot (\vx53 meV,
\vy54 meV). The upper~lower! panel corresponds to the odd
~even-! parity state in the point marked by ‘‘C’’ ~‘‘ D ’’ ! in Fig. 10.
The position of one of the electrons in the PCF plot marked by3 is
fixed at pointx50, y520 nm.
4-7



d

e

e-
e

ge

-
to
t

la

w
al
or
cla

e
u

w-

n
th
en
lli

e
c
e
at

et
gs

l of
-
-

en-
sical

the
e
st-
sti-
rgy

e-

lds
ere-
ond

ld
ted
n-

h-
al
n-

als.
ent

e

ron

SZAFRAN, PEETERS, BEDNAREK, AND ADAMOWSKI PHYSICAL REVIEW B69, 125344 ~2004!
from the phase diagram. The charge-density plot presente
the upper panel of Fig. 12 for point ‘‘C’’ in Fig. 10 shows
that the odd-parity state forms a charge-density maximum
the center of the dot. The strongy confinement prevents th
formation of the even-parity state~the lower panel of Fig.
12! in which this central charge-density maximum is r
moved. The right vertical dashed line in Fig. 10 marks thy
confinement energy above which the zigzag structure18 of the
classical three-electron system~cf. lowest panel of Fig. 4! is
suppressed to thex axis. Figure 13 shows the electron char
density plotted for\vy55 meV and B56 T ~the point
marked by ‘‘F ’’ in Fig. 10!. The observed three charge
density maxima at higher magnetic field shrink and tend
ward the single nondegenerate classical configuration. In
quasi-one-dimensional regime of strongy confinement the
convergence of the three-electron charge density to the c
sical limit is not accompanied by any level crossings.

C. Broken-symmetry states

The preceding results show that the quantum systems
classical degeneracy at high field contain all the classic
degenerate configurations. As a consequence, the c
sponding charge density does not resemble any single
sical charge distribution. One has to break the symmetry
the external potential in order that the quantum charge d
sity reproduces one of the degenerate classical config
tions. Let us construct such broken-symmetry statescbs in
form of a linear combination of the two lowest-energy fe
electron states (x1 andx2, respectively!,

cbs5~x11cx2!/A2, ~5!

where ucu251. Usually, the charge density of a state co
structed in this way does not reproduce the symmetry of
confinement potential. We constructed such brok
symmetry states for the system of three electrons in an e
tical dot with \vx53 meV and\vy54 meV ~cf. Fig. 9!.
We have found that the broken-symmetry charge density
hibits three maxima. For a properly chosen phase of the
efficient c in Eq. ~5! the positions of these maxima coincid
with the position of the electrons in one of the degener
classical configurations~cf. the lowest panel of Fig. 4!. Fig-
ure 14 shows the charge density of the broken-symm
states for different values of the magnetic field. Plots in Fi

FIG. 13. Charge density for the three-electron system in an
liptical dot (\vx53 meV, \vy55 meV) for B56 T. The plot
corresponds to the point marked by ‘‘F ’’ in Fig. 10.
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14~a! and 14~b! correspond to ‘‘black’’ and ‘‘white’’ degen-
erate classical configurations depicted in the lowest pane
Fig. 4. Plots 14~a! and 14~b! have been obtained with oppo
site sings ofc in formula ~5!, so they correspond to orthogo
nal wave functions. Figures 14~a!, 14~c!, and 14~d! show that
as the magnetic field grows the charge density of the brok
symmetry state converges to one of the degenerate clas
configurations of point charges.

The expectation value of the energy calculated for
broken-symmetry state@Eq. ~5!#, independently of the phas
of c, is equal to the arithmetic average of the two lowe
energy levels. It means that this expectation value overe
mates the exact ground-state energy by half of the ene
spacing between the two lowest levels~cf. inset of Fig. 9!.
For the magnetic fields corresponding to degeneratex1 and
x2 states@cf. Eq. ~5!#, i.e., to the energy-level crossings pr
sented in Fig. 9, the broken-symmetry states~5! are exact
ground eigenstates of the Hamiltonian. The magnetic fie
chosen in Fig. 14 correspond to these level crossings. Th
fore, the charge densities presented in this figure corresp
to the exact ground-state solutions of the Schro¨dinger equa-
tion. Conversely, for an arbitrary value of the magnetic fie
the exact ground-state wave function can be construc
from a superposition of the wave functions of two broke
symmetry states with semiclassical electron localization@cf.
Figs. 14~a! and 14~b!#.

IV. SQUARE QUANTUM DOT

In order to verify the conclusions concerning the hig
magnetic-field evolution of the charge density in elliptic
dots we performed a study of Wigner crystallization in qua
tum dots with square and triangular confinement potenti
For the square quantum dot we used a smooth confinem
potential with a square profile,

V~x,y!5 1
2 m* v2~x21y2!@11cos~4f!/5#, ~6!

wheref is the angle between the position vector (x,y) and
the x axis. We take\v53 meV. The potential is illustrated

l-

FIG. 14. Charge density of the broken-symmetry three-elect
states @cf. Eq. ~5!# in an elliptical dot (\vx53 meV, \vy

54 meV) for B56.3 T ~a,b!, 14.125 T~c!, and 25 T~d!. For the
chosen fields the plots correspond to exact ground states.
4-8
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ANISOTROPIC QUANTUM DOTS: CORRESPONDENCE . . . PHYSICAL REVIEW B 69, 125344 ~2004!
in Fig. 15 along with the degenerate classical lowest-ene
configurations of three electrons. On the other hand for
electrons there are only two equivalent configurations
which the electrons reside in the opposite corners of
square,34 and forN54 the classical system is nondegener
with electrons occupying all the corners.

The MCI calculations for potential~6! have been per-
formed with 12 centers placed on the circumference o
square with equal spacings along its sides. The size of
square was optimized variationally. The obtained charge d
sity is presented in Fig. 16. In the system of four electro
the charge density becomes distinctly separated into
single-electron islands. ForN52 and 3 the formation of the
charge maxima at the corners of the square appears w
pronounced delay in magnetic-field strength with respec
the four-electron system.

The PCF plot presented in Fig. 17 gives an additio
insight into the electron distribution in the square quant

FIG. 15. Equipotential lines for the square confinement poten
~6!. The different types of symbols mark the position of the ele
trons in one of the four energy-equivalent configurations for
three-electron system.

FIG. 16. Charge densities of two-, three-, and four-elect
systems in the square quantum dot for various values of
magnetic field.
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dot when one of the electrons is fixed~cross in Fig. 17! along
one of the diagonals. At high magnetic field the plots forN
52 and 4 show that the other electrons become locali
semiclassically at the corners of the square. On the o
hand the two remaining electrons in the three-electron s
tem are smeared out over the two opposite sides of
square and their localization is weaker than in the two- a
four-electron systems. This weaker localization is related
the degeneracy of the classical three-electron system an
the fact that the electrons in the degenerate classical con
rations occupy nearby positions.

Table II shows that the present MCI approach gives
decent convergence of the energy estimates even for
three-electron system whose localization in the square qu
tum dot is rather vicious.

The gathering of the electron density at the corners
the square dot that we observe at high magnetic field
in qualitative agreement with previous exact9 and
density-functional-theory11,12 results for large quantum dot
in the absence of magnetic field.

The symmetry of the electron states in square quan
dots is higher than in elliptical dots.35 In the symmetric
gauge the Hamiltonian eigenstates are also eigenstates o

l
-
e

n
e

FIG. 17. Pair-correlation function for the two-, three-, and fou
electron system in the square quantum dot. The cross marks
position of one of the electrons@(212,12), (217,17), (220,20)
for N52, 3, and 4, respectively~in nanometers!#.

TABLE II. Convergence of the total energy~in meV! for the
three-electron system in the square quantum dot~6! as function of
the number of centers used in the wave function~3!.

M
B(T) 4 8 12 16

4 28.51 28.08 27.99 27.98
12 48.87 46.38 46.27 46.26
20 70.22 66.35 66.12 66.08
4-9
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SZAFRAN, PEETERS, BEDNAREK, AND ADAMOWSKI PHYSICAL REVIEW B69, 125344 ~2004!
p/2 rotation operator corresponding to eigenvalues61
~even-parity states! and6 i ~odd-parity states!. Since we are
using the Landau gauge, in which the Hamiltonian does
commute with thep/2 rotation operator, we cannot discu
these symmetries properly.36 However, we have found tha
the ground state of two electrons for the MDD and the ot
spin-polarized ground states at high magnetic fields is alw
of odd-parity-like in circular and elliptical quantum dot
Figure 18 shows the two lowest-energy levels of tw
electrons in a square quantum dot~the lowest excited state i
also of odd parity!. Contrary to the case of elliptical dots th
crossings between the odd-parity energy levels are
avoided. Thus we can conclude that the interchanging t
electron energy levels presented in Fig. 18 correspond
orthogonal eigenstates with eigenvalues6 i of the p/2 rota-
tion operator.

For three electrons the oscillations of the ground-st
parity with magnetic field are observed like in circular a
elliptically deformed dots~cf. Fig. 9!. The two lowest-energy
levels forN53 are presented in Fig. 19.

The two- and three-electron systems in square quan
dots are similar to the three-electron system in an elliptica
deformed dot~with comparable confinement energies in thex
andy directions! in three points. First, all these systems e
hibit classical degeneracy. Second, their energy levels ex
crossings as function of the magnetic field~cf. Figs. 13, 18,
and 19!. Third, it is possible to extract a single semiclassi
broken-symmetry charge distribution as a linear combina
of the two crossing lowest-energy levels.

Figure 20 shows the charge density of a superposition
the two lowest-energy states of two- and three-elect
square dot calculated using Eq.~5!. The other semiclassica
configuration of the two-electron system corresponding
electrons gathering at the other diagonal of the square ca
obtained by changing the sign ofc in Eq. ~5!. The three-
electron charge density plotted in Figs. 20~c! and 20~d! cor-
responds to the classical charge density marked by squar
Fig. 15. The three other equivalent configurations can

FIG. 18. Two lowest-energy levels of the two-electron squ
quantum dot calculated with respect to the lowest Landau leve
functions of the magnetic field. Both energy levels are of odd pa
The inset shows half of the energy spacing between the two low
energy levels.
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obtained by rotating the coefficientc by p/2 in the Gauss
plane. It is interesting to note that a linear combination of
two lowest-energy states can yield all four semiclassi
charge distributions. On the other hand any pair of the f
broken-symmetry states is sufficient to reconstruct the ex
ground state. The broken-symmetry states correspondin
the classical configurations marked by squares and open
~full dots and crosses! in Fig. 15 are mutually orthogonal
With increasing magnetic field the charge maxima presen
in Fig. 20 shrink to the classical point-charge distribution

The energy overestimate of the broken-symmetry s
~half of the energy spacing between the lowest levels! is
presented in the insets of Figs. 18 and 19, respectively.
notice that the envelope of the oscillation of the energy ov
estimate is a decreasing function of the magnetic field. Si
lar decreasing tendency can be noticed for the three-elec
system in an elliptical dot~cf. inset of Fig. 9!, but in that case
the parity of the ground state has a visible influence on
height of the local maxima of the energy overestimate due
the shrinkage of the stability region of the even-parity pha
with growing y-confinement energy~cf. Fig. 10!.

e
as
.

st-

FIG. 19. Two lowest-energy levels of the three-electron squ
quantum dot calculated with respect to the lowest Landau level.
odd- ~even-! parity energy level is plotted with solid~dashed! line.
The inset presents the half of the energy spacing between the
lowest-energy levels.

FIG. 20. Charge density of the broken-symmetry solutions@cf.
Eq. ~5!# of the two- ~a, b! and three-electron square quantum d
for B55 T ~a!, 12 T ~b!, 8 T ~c!, and 16 T.
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ANISOTROPIC QUANTUM DOTS: CORRESPONDENCE . . . PHYSICAL REVIEW B 69, 125344 ~2004!
The four-electron spin-polarized ground state in a squ
dot is of even parity~like in circular and elliptical dots! and
no level crossings as function of the magnetic field are
served. In this respect the four-electron system confined
square quantum dot is similar to the two- and four-elect
systems in elliptical dots as well as to three-electrons
strongly deformed wirelike quantum dots~cf. discussion of
Fig. 10!. Another feature common to almost all these syste
is that their classical counterpart is nondegenerate. The
exception is the four-electron system for elliptical dots w
vy /vx ratio corresponding to the zigzag classical configu
tion ~cf. Fig. 6!. We did not obtain level crossing for thi
system, although for certain magnetic fields the excited o
parity state can closely approach the even ground state.

V. TRIANGULAR QUANTUM DOT

The confinement potential for a triangular dot is taken7

V~x,y!5 1
2 m* v2~x21y2!@112 cos~3f!/7#, ~7!

with \v53 meV. Classical three- and four-electron syste
in this potential are nondegenerate; the electrons occup
the corners of the triangle, and one of the electrons in
four-electron system resides in the center of the triangl34

On the other hand the classical two-electron system is th
fold degenerate. The profile of the potential and the positi
of electrons in the degenerate two-electron classical confi
rations are presented in Fig. 21.

The calculations were performed with 12 centers situa
at the circumference of an equilateral triangle with eq
spacing along its sides. For four electrons an additional 1
center was introduced in the center of the triangle. As in
preceding calculations, the size of the triangle was optimi
variationally. The obtained charge density is plotted in F
22. In systems of three and four electrons the magnetic fi
induces the formation of single-electron islands around
positions of classical electrons in the nondegenerate low
energy configurations. The clear localization of electrons
N53 and 4 resembles the one for four-electrons in
square quantum dot~cf. Fig. 16! as well as the plots forN
52 and 4 in the anisotropic confinement potential presen
in Fig. 4. On the other hand forN52 the formation of the

FIG. 21. Equipotential lines for the triangular confinement p
tential ~7! with \v53 meV. Different symbols show the three d
generate classical lowest-energy configurations for the two-elec
system.
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charge maxima at the corners of the triangle appears wi
visible delay and the localization of electrons along the si
is observed like in the three-electron system in the squ
quantum dot~cf. Fig. 16!.

The three- and four-electron systems in the triangular d
for which their classical lowest-energy configuration is no
degenerate, do not exhibit any level crossings as functio
the magnetic field, but the two-electron system~classically
degenerate! does. The crossing lowest-energy levels are p
sented in Fig. 23. The electron systems in the triangular c
finement potential do not possess a definite parity. Howe
~in the symmetric gauge! the Hamiltonian eigenfunctions
should also be eigenstates of the 2p/3 rotation operator cor-

-

on

FIG. 22. Charge densities of two-, three-, and four-electron s
tems in a triangular quantum dot~7! with \v53 meV for various
values of the magnetic field.

FIG. 23. Two lowest-energy levels of a two-electron triangu
quantum dot calculated with respect to the lowest Landau level.
insets present the charge density of the broken-symmetry solu
obtained for the subsequent energy-level crossings appearin
magnetic fields 5.9, 12, 18.3, and 24.4 T, respectively. The ba
the inset shows the length scale for the charge-density plots.
4-11
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SZAFRAN, PEETERS, BEDNAREK, AND ADAMOWSKI PHYSICAL REVIEW B69, 125344 ~2004!
responding to eigenvalues equal to three complex cubic r
of 1. It may be expected that each level of the crossing p
presented in Fig. 23 corresponds to a different eigenva
Similarly as in the dots studied in the preceding part of
paper the energy spacings between the two lowest levels
hibit oscillations decreasing with the external field. Formu
~5! still successfully produces the semiclassical char
density distributions. The insets of Fig. 23 show the plots
the broken-symmetry solutions drawn for the magnetic fie
corresponding to the level crossings. The presented ch
densities correspond to the classical configuration marke
crosses in Fig. 21. We have verified that the other two se
classical distributions can be obtained by rotation ofc in Eq.
~5! by 2p/3 in the Gauss plane.

VI. EXACT BROKEN-SYMMETRY STATES
FOR CIRCULAR DOTS

From the present findings for anisotropic dots we m
wonder whether it is also possible to obtain the class
configurations for circular dots. The classical electron s
tems in circular dots are infinitely degenerate with respec
rotation over an arbitrary angle. From the point of view
the preceding discussion, the cylindrical symmetry of
exact charge density can be considered as a superpositi
all classically degenerate configurations. Like most of
classically degenerate systems discussed in this paper
electron systems in circular quantum dots exhibit level cro
ings as function of the magnetic field.

The two lowest-energy levels of the two-electron circu
dot are displayed in Fig. 24. For an arbitrary magnetic fi
the ground and the first excited states correspond to adja
magic angular momenta~given by numbers close to th
curves in Fig. 24!. The inset shows half of the energy spaci
between the lowest levels. The superposition of the t
lowest-energy states calculated according to Eq.~5! give the
broken-symmetry semiclassical distributions which are d
played in Fig. 25. The magnetic fields chosen for Fig. 25

FIG. 24. Two lowest-energy levels of the two-electron system
circular dot with\v53 meV calculated with respect to the lowe
Landau level. The numbers (21, 23, 25, 27, and29) give the
angular momenta of the two lowest-energy states~in \ units!.
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close to the level crossings presented in Fig. 24. At the le
crossings the broken-symmetry states are exact gro
states. The corresponding charge densities shrink to poin
density distributions with growing magnetic field. The mod
fication of the phase ofc in Eq. ~5! results in a rotation of the
broken-symmetry Wigner molecules, which can be pinned
an arbitrary angle for a properly chosen phase.37 It is a strik-
ing feature of the quantum superposition@Eq. ~5!# that for an
arbitrary magnetic field the exact ground state with circula
symmetric charge density can be reconstructed from
wave functions of two broken-symmetry Wigner molecul
pinned at any two different angles@cf. also the discussion in
connection with Figs. 20~c! and 20~d!#.

The energy levels of the three- and four-electron syst
~cf. Figs. 26 and 27! exhibit the same qualitative behavior a
for N52. The envelope of the lowest-energy-level sepa
tion presented forN52, 3, and 4 electrons in the insets
Figs. 24, 26 and 27 exhibits very similar dependence on
magnetic field, however ‘‘the frequency’’ of these oscill
tions grows fast with the number of electrons. The broke
symmetry charge densities in the neighborhood of

n
FIG. 25. Broken-symmetry charge densities of the superposi

of two lowest-energy states forN52 for a circular dot. Plots~a–d!
correspond to magnetic fields 6, 11.5, 17.5, and 25 T, respectiv

FIG. 26. Same as Fig. 24 but forN53.
4-12
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ANISOTROPIC QUANTUM DOTS: CORRESPONDENCE . . . PHYSICAL REVIEW B 69, 125344 ~2004!
ground-state level crossings forN53 and 4 are displayed in
Figs. 27 and 29. The charge density presented in Fig. 2~a!
has been obtained as a superposition of states with ang
momenta23\ and 26\. The charge densities of thes
states in the neighborhood of their energy-level crossi
were shown in Fig. 11.

The present broken-symmetry charge densities, which
constructed from the superposition of the exact diagonal
tion solutions, are very similar to charge densities obtain
by the unrestricted Hartree-Fock method, e.g., compare
27 with Fig. 13 of Ref. 38.

The present finding provides an insight into the probl
of the magic angular momenta.2,3,20–22A linear combination
of any pair of states with different angular momenta p
duces a broken-symmetry charge density. The excepti
feature of the states with adjacent magic angular momen
that their superposition reproduces the semiclassical ch
density, which at the infinite magnetic-field limit tends to o
of the degenerate classical point-charge distributions. I
obvious that any charge distribution, including the semicl
sical one, can be reproduced by a superposition of angu

FIG. 27. Broken-symmetry charge densities forN53 for a cir-
cular dot. Plots~a–d! correspond to magnetic fields 4.9, 7.5, 15, a
18.4 T, respectively.

FIG. 28. Same as Fig. 24 but forN54.
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momentum eigenstates, since they form a complete ba
However, a superposition of more than two states wo
never give an exact value of the ground-state energy, s
the ground state in spin-polarized circular dots is at m
twofold degenerate. The subsequent magic angular mom
correspond to states which exhibit ground-state level cro
ing ~each of the crossing levels corresponds to the gro
state at its side of the level crossing!. The level crossings
allow the semiclassical laboratory-frame charge distribut
to appear as a realizable feature of the exact ground sta
the magnetic field corresponding to the crossing. We hav
note here that this conclusion has been reached for sys
containing a small number of electrons and we cannot
clude a different behavior for largerN.

Mean-field approaches predict spontaneous breaking3 of
the symmetry of the confinement potential symmetry of
electron wave function after the MDD decay. Although, th
effect is a notorious artifact,3 it is generally believed tha
there is some deeper physics behind it. The exact solut
show a rapid increase of the electron-electron correlation
ter the MDD breakdown. This increase appears in the in
coordinates and can be observed in the PCF plots~cf. Figs.
11, 12, and Ref. 30!. Since the mean-field theories cann
give a complete description of the inner-coordinate spa
they tend to account for the electron-electron correlation
the external~laboratory! frame of reference, which results i
the symmetry breaking.

The energy overestimates obtained with the brok
symmetry solutions exhibit oscillations with amplitude d
creasing with the magnetic field. The precision of t
ground-state energy estimates obtained by the HF wave f
tion with semiclassical localization24 also possesses an osc
latory dependence on the magnetic field with minima at
magnetic field corresponding to the exact ground-state tra
formations. Contrary to the broken-symmetry solutions o
tained in the present paper at the exact-diagonalization l
the HF energy overestimates take on nonzero values at

FIG. 29. Broken-symmetry charge densities forN54 for a cir-
cular dot. Plots~a–d! correspond to magnetic fields 4.75, 6.5, 11
and 16 T, respectively.
4-13
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minima.24 The present paper shows that the fact that the
broken-symmetry solutions overestimate the exact grou
state energy at the fields inducing its transformations is
due to their broken symmetry, but to their mean-field ch
acter. The broken-symmetry states constructed from the
generate exact solutions presented in this paper conta
complete description of the inner-coordinate space. Due
this fact they provide the exact ground-state energy for fin
values of the magnetic fields corresponding to the grou
state transformations. The HF broken-symmetry soluti
account for the separation of the electron charges but the
of the correlation effects, most probably the reaction of
electron on the actual positions of the electrons inside
other charge puddles, is missed. This missing part of
correlation is squeezed to zero in the infinite magnetic fi
for which the charge puddles shrink to point-char
distributions.24

VII. SUMMARY AND CONCLUSIONS

We presented a detailed study of the magnetic-fie
induced Wigner crystallization of the two-, three-, and fou
electron spin-polarized systems in quantum dots. The
tained results, although limited to small numbers
electrons, cover several symmetries of the confinement
tential. We studied quantum dots of elliptical, square, tria
gular, and circular symmetry. In the present study, we de
oped a configuration-interaction scheme which was base
single-electron wave functions expanded in a multicenter
sis. The method, verified for the well-known case of an i
tropic harmonic-oscillator potential, can be applied to t
case of any smooth confinement potential with arbitr
symmetry. The arbitrariness in the choice of centers in b
~3! allows us to achieve a high accuracy and flexibility of t
present MCI method accompanied with its relatively sim
applicability to low-symmetry nanostructures.

We have studied the parity transformations in the sp
polarized electron systems confined in elliptical quant
dots and found anticrossings between the energy levels o
same spatial symmetry. The experimental identification39,40

of the magnetic-field-induced ground-state transformati
for the N-electron system in a cylindrical quantum dot
based on detection of cusps of the chemical potential,
the difference of the ground-state energy of theN and N
21 electron system. Based on the present results we ex
that the ellipsoidal deformation of the quantum dot poten
results in a smoothening of the cusps of the charging line41

corresponding to the ground-state transformations betw
states of the same spin and parity symmetry. On the o
s.
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hand, cusps related to spin or parity transformations sho
remain sharp.

Quantum Wigner molecules in anisotropic quantum d
are related with the lowest-energy configurations of th
classical counterparts. At high magnetic fields the quant
charge density tends to simultaneously reproduce all the
generate lowest-energy classical configurations. Classica
generacy occurs when the lowest-energy configuration is
different symmetry than the confinement potential. We fou
that the quantum charge density is a superposition of
these degenerate classical configurations. Consequently
quantum-mechanical charge-density reproduces the sym
try of the confinement potential. We conclude that the obs
vation of Wigner crystallization through its charge-dens
distribution will be facilitated in low-symmetry quantum
dots for which the symmetry of the classical configurati
conforms with the symmetry of the external potential, i.e.,
systems which do not exhibit classical degeneracy.

Moreover, we have found a relation between the occ
rence of the magnetic-field-induced level crossings and c
sical degeneracy. None of the studied quantum systems
nondegenerate classical counterpart exhibit such cross
The formation of Wigner phase in these systems is a cont
ous process. For majority of the studied quantum syste
with degenerate classical counterparts these crossings ar
served. The only exception is the four-electron system
elliptical dots for which the classical configuration has a z
zag form. We have shown that in the presence of the cro
ings a superposition of the two lowest-energy states produ
a broken-symmetry state whose charge density reprod
one of the degenerate classical configurations. These bro
symmetry states are exact ground states for the magn
fields for which the crossings appear and for which t
ground state is twofold degenerate. The ground-state de
eracy allows the semiclassical broken-symmetry charge
tribution to be a realizable property of the quantum syste
This conclusion holds also for circular dots. The superpo
tion of the adjacent magic-angular-momenta states allows
inner symmetry of the quantum system to appear in the la
ratory frame of reference.
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