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Few-electron systems confined in quasi-one-dimensional quantum dots are studied by the configuration
interaction approach. We consider the parity symmetry of states forming Wigner molecules in large quantum
dots and find that for the spin-polarized Wigner molecules it strictly depends on the number of electrons. We
investigate the spatial spin ordering in the inner coordinates of the quantum system and conclude that for small
dots it has a short-range character and results mainly from the Pauli exclusion principle while the Wigner
crystallization in large dots is accompanied by spin ordering over the entire length of the dot.
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I. INTRODUCTION

Strong confinement of charge carriers in two directions
results in reduction of their degrees of freedom to a single
one, i.e., in quasi-one-dimensional motion. Such one-
dimensional systems are realized typically in split-gate1,2 and
cleaved-edge overgrowth3 semiconductor quantum wires, as
well as in carbon nanotubes,4 but can also be realized in
finite-size systems, i.e., in anisotropic quantum dots5 or
quantum rings.6 There is a renewed interest in the one-
dimensional systems related to the recent progress of vapour-
liquid-solid fabrication of quantum wires of very high
quality.7–9

The present paper is devoted to electron systems confined
in one-dimensional quantum dots and in particular to their
Wigner crystallization10 appearing when the electron-
electron interaction dominates over the kinetic energy.
Wigner electron solids(Wigner molecules) are predicted to
appear in large dots11 or in strong magnetic fields.12 In the
Wigner molecules the charge density separates into distinct
charge maxima each corresponding to one of the confined
electrons. Formation of Wigner molecules in the ground-state
charge density in one-dimensional quantum dots was previ-
ously obtained in exact diagonalization13–15 and the density
functional approach.16 In one-dimensional dots the Wigner
localization appears in the laboratory frame, in contrast to
the inner-coordinate crystallization appearing in circular
quantum dots,12 including quantum rings. Transport proper-
ties of Wigner crystals formed in open infinite one-
dimensional systems have also been studied.17,18 The Lut-
tinger liquid formalism has been applied19 to quantum wires
with box-like boundary conditions, i.e., to the one-
dimensional quantum dots. Melting of classical one-
dimensional Wigner crystals has recently been described.20

We study the quasi-one-dimensional quantum dots using a
configuration interaction approach with the effective
electron-electron interaction potential which we derived
recently.21 This work is a generalization of our exact two-
electron study15 to a larger number of electrons. In the weak
confinement limit the ground state becomes nearly degener-
ate with respect to the spin configuration of the electron
system.14,15 Similar approximate degeneracy has been found
in quantum rings of large radius.22 In this paper we study the

parity symmetry of the nearly degenerate states forming
Wigner molecules in large dots. We show that for spin-
polarized electrons the Wigner localization is formed only
for one (even or odd) spatial parity of the state strictly de-
pendent on the number of electrons. We present this depen-
dence in the form of a theorem for which we provide a rig-
orous analytical proof. The found dependence of the parity of
one-dimensional Wigner molecule states on the number of
electrons is similar to the appearance of the magic angular
momenta states for which Wigner crystallization is possible
in circular dots.23,24Furthermore, we discuss an inhibition of
Wigner crystallization by a perturbation of the confinement
potential through a central inversion-invariant potential well.

Magnetic spin ordering of electrons in one-dimensional
space has been extensively studied25 in Hubbard models
which, in one dimension with only nearest-neighbor hopping
interactions, predict the appearance of a low-spin ground
state.26 This is a consequence26 of the Lieb-Mattis theorem27

which implies that without spin-dependent interactions the
ground state of one-dimensional electron systems corre-
sponds to the lowest possible spin quantum number(S=0 or
1/2). This feature generally does not have to result in any
spatial spin ordering. In this paper we use the exact numeri-
cal solution of the Schrödinger equation to investigate the
spatial distribution of spins in the one-dimensional quantum
dot and the relation between the charge and spatial spin or-
dering in the Wigner crystallization limit. We find that
Wigner crystallization is accompanied by a long-range spin-
ordering in the inner coordinates of the system instead of a
spin-symmetry breaking predicted by the density functional
theory.16,28 In the ground-state this ordering has a clear anti-
ferromagnetic character.

This paper is organized as follows. In Sec. II we present
the theoretical method. Section III contains the results for the
Wigner localization and ground state degeneracy of the few
electron systems. In Sec. IV we present proof for the depen-
dence of the parity of spin-polarized Wigner molecules on
the number of electrons. Section V contains a discussion of
the effect of a central defect on Wigner crystallization. In
Sec. VI the study of spin ordering is presented. Section VII
contains our summary and conclusions.
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II. THEORY

We consider N electrons confined in a quasi-one-
dimensional quantum dot with strong lateral harmonic-
oscillator confinement potential. The Hamiltonian of the sys-
tem reads

H = o
i=1

N

hi + o
i=1

N

o
j.i

N
k

r ij
, s1d

whereh stands for the single-electron Hamiltonian

h = −
"2

2m* ¹2 +
m*v2

2
sx2 + y2d + Vszd, s2d

Vszd is the confinement potential in thez direction. For a
large lateral harmonic-oscillator confinement energys"vd
the movement of electrons in thesx,yd plane is frozen to the
harmonic-oscillator ground state. Then, one can perform
integration21 over the lateral degrees of freedom which re-
sults in the following Hamiltonian:

H = N"v + o
i=1

N

hi
1D + o

i=1

N

o
j.i

N

sp/2d1/2sk/ld

3 erfcszij /2
1/2ldexpszij

2/2l2d, s3d

wherezij = uzi −zju and

h1D = −
"2

2m*

d2

dz2 + Vszd s4d

is the single-electron one-dimensional Hamiltonian. In the
following we will neglect the first term in Eq.(3), i.e., the
lateral confinement energy which is independent of the form
of wave functions in thez direction. The last term in Eq.(3)
is the effective interaction energy21 for electrons in a quasi-
one-dimensional environment resulting from integration of
the Coulomb potential over the lateral coordinates,m* is the
effective mass,k=e2/4p«0«, « is the dielectric constant, and
l =Î" /m*v. We assumeVszd=Vwellszd, a rectangular potential
well of depthV0=200 meV, and widthd. We adopt GaAs
material parameters, i.e.,m* =0.067me0, e=12.4 as well as
"v=10 meV sl =10.66 nmd for the lateral confinement en-
ergy. Calculations have been performed forN=2, . . . ,5 elec-
trons by the configuration interaction approach with a basis
set of Slater determinants built with single-electron spin or-

bitals. Spatial single-electron wave functions have been ob-
tained by numerical diagonalization of the finite-difference
version of the single-electron one-dimensional Hamiltonian
(4) on a mesh of points. In construction of the Slater deter-
minants with required spin and parity symmetries we use the
spatial wave functions of up to eight lowest-energy single-
electron states which results in a Slater determinant basis
size of up to 1520 elements and an accuracy better than
0.01 meV.

The present approach is based on the assumption that only
the lowest state of the lateralsx,yd quantization is occupied.
We performed test calculations for two, three and four elec-
trons to check the validity of this approach. We allowed the
electrons to occupy also thep-type lowest excited state of the
lateral quantization with angular momentum ±". Inclusion of
p states not only allows for determination of the critical well
length above which thep shell is emptied, but it is also
helpful to estimate the importance of the angular correlations
in the x-y plane. The Coulomb matrix elements were evalu-
ated using effective interaction potentials derived with the
use of the Fourier transform technique.21 We have obtained
the following results: thep shell is left empty ford.39 and
41 nm forN=3 and 4, respectively(for two electrons thep
shell is never occupied). Accounting for thex-y correlations
via inclusion of thep-type orbitals in the configuration inter-
action basis lowers the two-electron total energy estimates by
0.18, 0.12, 0.01, and 10−4 meV for d=40,50,100, and
200 nm, respectively. These “lateral correlation energies” for
the same values ofd are equal to 0.4, 0.3, 0.08, and 4
310−3 meV for N=3, and 1.18, 0.67, 0.23, and 0.03 forN
=4, respectively. The energy overestimation in the range ofd
studied further is never significant and the present approach
is nearly exact in the Wigner localization regime.

III. GROUND STATE DEGENERACY AND WIGNER
CRYSTALLIZATION

In this paper we label the states by their total spinS and
parity quantum numbers using the notation:S±, where the
positive(negative) sign stands for even(odd) parity. We dis-
cuss only the lowest-energy states for a given spin-orbital
symmetry. Figure 1(a) shows the lowest energy levels of the
two-electron system multiplied by the dot lengthd as func-
tions of d. For large dots the states 0+ and 1− as well as

FIG. 1. (a) Lowest energy levels multiplied by the dot length forN=2. Numbers close to the curves denote the total spin quantum number
of the corresponding states and signs +, − stand for even and odd parity symmetry.(b), (c), (d) Charge density of 0+, 1−, 1+, and 0− states
plotted with solid, dotted, dashed, and dash-dotted lines ford=50, 100, and 200 nm, respectively.
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0− and 1+ become mutually degenerate. For large values of
d potential energy related to penetration of electrons into the
barrier region is negligible, the kinetic energy scales as 1/d2

and the Coulomb energy as 1/d. Therefore, the product of
energy and dot length for larged behaves asfsdd=C+D /d
function, where the constantsC and D are related to the
Coulomb and kinetic energy, respectively. The energy levels
of the degenerate pairs of states tend to different constants in
the infinited limit which is apparently due to different values
of the Coulomb interaction in these pairs of states. The evo-
lution of the charge density for growing length of the dot is
shown in Figs. 1(b)–1(d). For large dots[cf. Fig. 1(d)] the
charge densities of the degenerate pairs of states become
identical. In the ground state the charge density has two pro-
nounced maxima which indicates the separation of electron
charges into two charge islands, i.e., the Wigner crystalliza-
tion. Figure 1 shows that the singlet-triplet degeneracy ob-
tained previously15 for the two-electron ground-state appears
also in the first excited state.

Figure 2(a) shows the energy levels and Figs. 2(b)–2(d)
the charge density for the lowest-energy states of the three-
electron system for increasingd. For three electrons the
Wigner molecule is formed in states 1/2−, 1/2+, and 3/2−
which become degenerate for larged. In the state 3/2+ the
charge density exhibits four maxima[cf. Fig. 2(d)], which
apparently prevents this state to be degenerate with the
ground state.

In the four-electron system the ground state corresponds
to 0+ symmetry. The states 1−, 1+, and 2+ for large dots[cf.
Fig. 3(a)] tend to the degeneracy with the ground state. The

charge densities of these states for large dots present four
distinct maxima[cf. Fig. 3(d)]. Energy levels corresponding
to states 0− and 2− are separated by a significant energy
distance from the ground state[cf. Fig. 3(a)] and in large
dots they correspond to identical charge densities with five
maxima. The ground state charge density evolution obtained
for N=3 and 4 is in a qualitative agreement with the results
of Ref. 13.

Finally, in the five-electron system the ground state of
1/2+ symmetry becomes degenerate with1/2− , 3/2+ ,
3/2−, and 5/2+ states[cf. Fig. 4(a)] forming Wigner mol-
ecules for large dots[cf. Figs. 4(b)–4(d)]. The spin polarized
state of odd parity 5/2− does not become degenerate with
the ground-state and its charge density in large dots forms six
maxima[cf. Fig. 4(d)].

In the entired range and for all electron numbers studied
the order of the lowest energy levels for given total spin
quantum numbers(neglecting the parity) follow the order of
the spin quantum numbers, which is in agreement with the
theorem of Lieb and Mattis.27 In large dots the ground-state
degeneracy appears. In Ref. 14 the degeneracy was inter-
preted in terms of a vanishing tunnel coupling between the
local minima of the totalN-dimensional potential energy.
The present results indicate that the nearly degenerate states
possess the same charge density in the laboratory frame.
Moreover, we observe the following regularities. In the limit
of Wigner localization the ground state of theN-electron
system appears forN different pairs of the spin and parity
quantum numbers.29 For even electron numbersN=2 and 4,
N charge maxima are formed only for even parity states with

FIG. 2. (a) Lowest energy levels multiplied by the dot length forN=3. (b), (c), (d) Charge density of 1/2−, 1/2+, and 3/2− states plotted
with solid, dashed, and dotted lines ford=50, 150, and 200 nm, respectively. In(d) the charge density of the 3/2+ state is shown by the
dash-dotted curve.

FIG. 3. (a) Four-electron energy levels multiplied by the dot length.(b), (c), (d) Charge density of 0+, 1−, 1+, and 2+ four-electron states
plotted with solid, dash-dotted, dotted, and dashed lines ford=100, 200, and 300 nm, respectively. In(d) the charge densities of 2− and 0+
states are marked with crosses and dots, respectively.

SPATIAL ORDERING OF CHARGE AND SPIN IN… PHYSICAL REVIEW B 70, 035401(2004)

035401-3



S=0, while the odd parity zero-spin states possessN+1
charge maxima[cf. Figs. 1(d) and 3(d)]. The spin-polarized
Wigner-localized state can only be formed for one(even or
odd) parity. Namely, the parity of the spin-polarized Wigner
molecule state is even for four and five electrons and odd for
two and three electrons. The charge density of the spin-
polarized state of the other parity exhibitsN+1 maxima, i.e.,
the state does not form a Wigner molecule and as a conse-
quence does not become degenerate with the ground state
even for large dots. This conclusion will be cast into a theo-
rem in the next section.

IV. PARITY OF SPIN-POLARIZED WIGNER
MOLECULE STATES

Here we give an analytical proof of the theorem:for an
odd number of electrons N=2M +1 as well as for an even
number of electrons N=2M the parity of one-dimensional
spin-polarized Wigner-molecule state is even (odd) for even
(odd) value of the integer M.

We will present here the proof for an odd number of elec-
trons (the proof for evenN can be easily deduced from the
present demonstration). For oddN one of the electrons re-
sides near the center of the dot(point z0=0, cf. Fig. 5), and
the others occupy spatially symmetric sites to the left and

right of the dot around points which satisfyzk=−z−k for k
= ±1, ±2,… , ±M. In the Wigner phase the total charge den-
sity possessesN maxima corresponding to the separate
single-electron charge densities. A single-electron density
uckszdu2 is localized around pointzk. In the Wigner limit the
overlap between the single-electron charge densities vanishes
(the proof is only valid when this overlap is negligible), so
the total charge density can be expressed as their sum. Since
the total charge density is symmetric with respect to the ori-
gin the following equality holds:

ucks− zdu2 = uc−kszdu2, s5d

which results in the following relation for the single-electron
wave functions:

cks− zd = eifkc−kszd, s6d

where the phasefk is a real number. Relation(6) with
changed sign ofk reads:

c−ks− zd = eif−kckszd. s7d

Phasesfk andf−k are not independent. Changing the sign of
z in Eq. (7) and making use of relation(6) we arrive at

c−kszd = eif−kcks− zd = eisf−k+fkdc−kszd, s8d

hence,

fk = − f−k, s9d

up to an unimportant multiple of 2p. Considering relation(6)
for k=0 and reminding that we arrive at the same valuec0s0d
(nonzero for oddN) approaching the origin from both posi-
tive and negative sides we arrive atf0=0 and consequently
c0 is an even parity function

FIG. 4. (a) Five-electron energy levels multiplied by the dot length. Even(odd) parity levels are plotted with solid(dotted) lines.(b), (c)
Charge density of 1/2+, 1/2−, 3/2+, 3/2−, and 5/2+ states plotted with solid, dash-dotted, dotted, dashed, and dash-double-dot lines for
d=100 and 200 nm, respectively. In(d) the charge density of the 1/2+, 3/2−, and 5/2− state is shown by solid, dashed, and dotted lines,
respectively[charge densities of 1/2−, 3/2+, and 5/2+ are almost identical with the 1/2+ and 3/2− charge densities are therefore omitted
in (d) for the sake of clarity].

FIG. 5. Illustration to the proof that forN=2M +1 or N=2M
electrons the parity of the spin-polarized state which exhibits
Wigner localization is accordant with the parity ofM.
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c0s− zd = c0szd. s10d

Since the considered state is spin polarized the spin and spa-
tial parts of the wave function can be separated into a prod-
uct

xsz1,s1, . . . ,zN,sNd = ass1dass2d ¯ assNd

3 Csz1,z2, . . . ,zNd, s11d

where a is an eigenfunction of the single-electron spin
z-component operator. The spatial wave functionC can be
written as a Slater determinant30

Csz1,z2, . . . ,zNd

= *
c−Msz1d c−M+1sz1d . . .cM−1sz1d cMsz1d
c−Msz2d c−M+1sz2d . . .cM−1sz2d cMsz2d

. . .

c−MszNd c−M+1szNd . . .cM−1szNd cMszNd
* .

s12d

We apply the parity operator onC and make use of proper-
ties (6) and (9) obtaining

Cs− z1,− z2, . . . ,−zNd = *
e−ifMcMsz1d e−ifM−1cM−1sz1d . . .eifM−1c−M+1sz1d eifMc−Msz1d
e−ifMcMsz2d e−ifM−1cM−1sz2d . . .eifM−1c−M+1sz2d eifMc−Msz2d

. . .

e−ifMcMszNd e−ifM−1cM−1szNd . . .eifM−1c−M+1szNd eifMc−MszNd
* . s13d

Phase factors can be extracted from each of the determinant
columns, which yields

Cs− z1,− z2, . . . ,−zNd

= e−isfM+fM−1+. . .+f−M+1+f−Md

3*
cMsz1d cM−1sz1d . . .c−M+1sz1d c−Msz1d
cMsz2d cM−1sz2d . . .c−M+1sz2d c−Msz2d

. . .

cMszNd cM−1szNd . . .c−M+1szNd c−MszNd
* .

s14d

The phases in front of the determinant in Eq.(14) cancel
according to property(9). ExchangingM pairs of corre-
sponding columns in the determinant we arrive at Eq.(12)
but multiplied bys−1dM, which proofs that the parity of spin-
polarized one-dimensional Wigner molecule state is deter-
mined by the odd or even value ofM.

We have found that two- and four-electron zero-spin
states can form a Wigner-localized charge density only for
even spatial parity. We are unable to proof in general that the
zero-spin state with Wigner localization has to be of even
parity for evenN. But for N=2 such a proof is easily given.
In this case the spin and spatial parts of the wave function
can be separated as follows:

x0+sz1,s1,z2,s2d = fass1dbss2d − ass2dbss1dg

3 fc1sz1dc−1sz2d + c−1sz1dc1sz2dg.

s15d

Applying the parity operator to the spatial part of this wave
function and making use of the properties of the single-
electron wave functions given earlier we find that this wave
function is of even parity. Moreover, it follows that construc-
tion of a symmetric spatial wave function for odd-parity sin-

glet (zero-spin) two-electron statess0−d requires at least
three single-electron functions, for instance, the function

C0−sz1,z2d = c0sz1dc1sz2d + c1sz1dc0sz2d − c0sz1dc−1sz2d

− c−1sz1dc0sz2d, s16d

is of odd parity provided that we take zero phase shifts in
relation (6). Indeed, the 0− state forN=2 exhibits three
charge maxima[see Fig. 1(d)]. Moreover, construction of a
triplet antisymmetric spatial wave function with even parity
(1+) also requires at least three localized functions, for in-
stance

C1+sz1,z2d = c0sz1dc1sz2d − c1sz1dc0sz2d + c0sz1dc−1sz2d

− c−1sz1dc0sz2d, s17d

possesses the required symmetries for zero phase shifts in
relation(6). The charge density corresponding to wave func-
tions (16) and (17) is the same provided that the overlaps
between the functionsci are negligible. Figure 1(d) shows
that the charge densities of the states 0− and 1+ are indeed
indistinguishable. The area below the central maximum of
the probability density of degenerate 0− and 1+ states in Fig.
1(d) is two times larger than the area below each of the
extreme maxima, which can be interpreted by saying that
one of the electrons stays in the neighborhood of the center
of the system with 100% probability while probabilities of
finding the other one at the left or right end of the well are
equal to 50%. This feature is in agreement with the probabil-
ity amplitudes(16) and(17). Although in the wave functions
(16) and (17) the electron positions are separated, this sepa-
ration has a nonclassical character since the charge maxima
at the left and right ends of the dot correspond to subelectron
charges. Therefore, we do not refer to this separation as
Wigner localization. Average electron-electron distances in
states described by wave functions(16) and(17) are smaller
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than in states 0+, 1− with two charge maxima, which leads to
a larger value of the Coulomb interaction energy and conse-
quently to an energy separation between pairs of degenerate
states 0+,1− and 0− ,1+ presented in Fig. 1(a) in the weak
confinement limit.

V. WIGNER CRYSTALLIZATION IN THE PRESENCE
OF A DEFECT POTENTIAL

The presence of defects can significantly perturb the
Wigner crystallization in large systems. We consider here a
thin attractive cavity just deep enough to bind one electron.
The perturbed quantum dot potential is of the form

Vszd = Vwellszd + Vdefectszd, s18d

whereVdefectszd=−50 meV foruzu,1 nm andVdefectszd=0 for
uzu.1 nm. The assumption that the defect is localized in the
center of the system does not perturb the inversion invari-
ance of the total potential.

Figure 6(a) shows that contrary to the unperturbed quan-
tum well potential[cf. Fig. 1(a)] the 0− and 1+ states be-
come degenerate with the 0+ and 1− states. Figures
6(b)–6(d) show the evolution of the charge densities of the
four considered states with increasing size of the system. For
large well thickness[cf. Fig. 1(d)] the charge densities of
these states become indistinguishable. One of the electrons is
trapped by the potential of the central cavity which results in
the sharp central peak of the charge density. The probabilities
to find the other electron at the left or right side of the origin

are equal. This differs essentially from the two-electron
Wigner molecule charge density in the unperturbed dot[cf.
Fig. 1], for which the probability to find an electron in the
center of the well was negligible and for which each of the
two charge maxima could be associated with an integer elec-
tron charge. The formation of three maxima in the charge
density is possible for all states[cf. Eqs.(16) and (17), for
0− and 1+ states, similar formulas can be given for the other
two]. Therefore, the ground state tends to a fourfold degen-
eracy in contrast to the double degeneracy for the unper-
turbed dot[cf. Fig. 1(a)].

Figure 7 shows the lowest energy levels and correspond-
ing charge density evolution for the three-electron system.
Contrary to the two-electron system the central defect does
not perturb the number of charge maxima, Wigner localiza-
tion appears similarly as for the unperturbed dot[cf. Fig. 2]
for 1/2+, 1/2−, and 3/2− states which become degenerate in
the Wigner localization limit. State 3/2+, which according to
the theorem given in Sec. IV cannot form a Wigner phase
lies higher in energy, like for the unperturbed dot.

The influence of the central attractive defect is qualita-
tively different for odd and even electron number. For an odd
number of electrons it simply enhances the localization of
the central electron, and does not influence the ground state
degeneracy. While for evenN it destroys Wigner crystalliza-
tion leading to the appearance of an extra charge maximum
corresponding to subelectron charge and allows more states
to become degenerate with the ground state.

VI. SPATIAL SPIN ORDERING IN THE WIGNER LIMIT

It is interesting to look whether the low-spin ground states
exhibit any spatial antiferromagnetic ordering of the electron

FIG. 6. (a) Lowest energy levels forN=2 as functions of the
length of the well with a central attractive cavity[Eq. (18)]. Num-
bers close to the curves denote the total spin quantum number of the
corresponding states and signs +, − stand for even and odd parity
symmetry, respectively.(b), (c), (d) Charge density of 0+, 1−, 1+,
and 0− states plotted with solid, dotted, dashed, and dash-dot curves
for d=50, 100, and 200 nm, respectively.

FIG. 7. (a) Lowest energy levels forN=3 as function of the
length of the well with a central attractive cavity[Eq. (18)]. Num-
bers close to the curves denote the total spin quantum number of the
corresponding states and signs +, − stand for even and odd parity
symmetry.(b),(c),(d) Charge density of 0+, 1−, 1+, and 0− states
plotted with solid, dotted, dashed, and dash-dot curves ford=50,
100, and 200 nm, respectively.
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spins. For even number of electrons and arbitrary dot length
the ground state corresponds to zero total spin. In this case
the spin-up and spin-down densities are exactly equal to each
other, so that spin ordering is not visible in the laboratory
frame of reference. In order to investigate a possible spin
ordering in the zero-spin ground states one has to look into
the inner coordinates of the quantum system. We use here the
spin-dependent pair correlation functionssPCFsd defined for
a given state by the expectation values

FPCF
samesza,zbd =Ko

i=1

N

o
j.i

N

dsza − ziddszb − zjd

3suassidass jdlkassidass jdu

+ ubssidbss jdlkbssidbss jdudL , s19d

and

FPCF
opposza,zbd =Ko

i=1

N

o
j.i

N

dsza − ziddszb − zjd

3suassidbss jdlkassidbss jdu

+ ubssidass jdlkbssidass jdudL , s20d

wherea andb stand for spin-up and spin-down eigenstates,
respectively. Functions(19) and (20) give the probability of
finding at positionsza and zb a pair of electrons with the
same(19) or opposite(20) spins. The sum of functions(19)
and (20) gives the spin-independent PCF.

Figure 8(a) shows the PCF plots for the four-electron
ground state in a small quantum dot[cf. Fig. 3(b)] with d
=100 nm. The position of one of the electrons is fixed near
the right end of the dot[position marked by the thin vertical
line in Fig. 8(a)]. We see that the probability of finding an
electron with the same spin in the neighborhood of the fixed-
position electron is zero, which is a signature of the Pauli
exclusion principle. At the left side of the dot probabilities of
finding an electron with the same or opposite spin as the one
of the fixed position electron are nearly equal. For the total
zero-spin states in relatively small dots the spin ordering in
the inner coordinates is of short range and results from the
Pauli exclusion. We only found a long-range inner-
coordinate spin ordering in the Wigner crystallization limit.
Figure 8(b) shows the plot for the four-electron ground state

with d=300 nm. The charge density of the system exhibits
four distinct maxima[cf. Fig. 3(d)]. We fix the position of
one of the electrons at the rightmost density maximum[cf.
the vertical line in Fig. 8(b)]. The probability that the elec-
tron in the adjacent maximum has the opposite spin is nearly
100%. The spin-dependent PCFs also differ for the two
charge maxima at the left of the origin. An electron confined
at the first(second) charge maximum to the left of the origin
is more probable to have the same(opposite) spin as the one
of the fixed electron. The ordering is of a probabilistic char-
acter, so that the antiferromagnetic order of spins is the most
probable to be found, but the probability is not 100%. The
spin ordering in this state has a clearly antiferromagnetic
character and its range covers the entire length of the dot. A
similar inner-coordinate antiferromagnetic order was previ-
ously found for quantum rings.6

The 100% probability of finding the opposite spin in the
charge maximum adjacent to the maximum associated with
the fixed electron presented in Fig. 8(b) is not, as one could
naively expect, related to the Pauli exclusion. In Fig. 8(c) we
plotted the PCF for the 1− state, which becomes degenerate
with the ground 0+ state in the weak confinement limit. We
see that in this state the spin of electrons confined in the two
central maxima is independent of the spin of the electron at
the rightmost maximum. However, in this state one may ex-
pect that the electrons at the opposite ends of the dot have
the same spin, which means that also in this state a long-
range spin ordering exists, even if it is not of antiferromag-
netic origin.

For odd number of electrons the difference between
spin-up and spin-down densities appears in the laboratory
frame. This is qualitatively different from quantum rings,
which in fact are endless structures. Figure 9(a) shows the
spin densities for a relatively small dot length ofd
=100 nm[too small for the ground state Wigner localization
to appear, cf. Fig. 4(b)]. The spin-up electrons tend to gather
at the extreme left and right ends of the dot as well as in its
center. The spin-down density is minimal in the center of the
dot, and the overall spin density(difference of the spin-up
and spin-down densities) exhibits antiferromagnetic sign os-
cillations within the dot. These sign oscillations are due to
the electron-electron interaction since in the noninteracting
electron system the majority spin-up density is nowhere
smaller than the spin-down density. For larger systems[d
=250 nm, cf. Fig. 9(b)] the antiferromagnetic spin oscilla-
tions become more pronounced. However, for even largerd
[cf. Figs. 9(c) and 9(d)], for which the Wigner molecule ap-
pear in the 1/2+ ground state, the typically antiferromagnetic

FIG. 8. PCFs for four elec-
trons in state 0+[(a),(b)] and state
1− with Sz=" (c) for d=100 (a)
and 300 nm[(b),(c)]. One of the
electrons is fixed and its position
is marked by a thin vertical line.
Solid curves show the spin-
independent PCF, dashed(dotted)
curves show the opposite(same)
spin PCF.
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real-space spin ordering with the spin orientation changing
between the adjacent charge maxima vanishes.

Let us look at the spin distribution in the inner coordinates
of the 5-electron 1/2+ ground state. Figure 10(a) shows the
PCF plots ford=100 nm. Electrons of the same spin as the
fixed electron do not appear in its close neighborhood, but
are more probable to be found at the center of the dot than
electrons of opposite spin. Probability of finding an electron
at the opposite side of the dot is independent of its spin. The
spin order in this relatively small dotsd=100 nmd is clearly
short range which is similar as for the case of four electrons
in a small dot[cf. Fig. 8(a)]. The PCF plots for opposite
spins at the left end of the dot start to differentiate ford
=200 nm[cf. Fig. 8(b)]. For d=300 nm, for which Wigner
localization is observed[cf. Fig. 4(d)], the PCF plots show a
long-range antiferromagnetic spin ordering. Notice the
growth of the PCF plot for the same spin direction in the
closest neighborhood of the fixed-position electron fromd
=200 to 300 nm in Figs. 8(b) and 8(c). Pauli exclusion plays
a less significant role for larger distances between the charge
maxima.

Density-functional studies16,28 predict the appearance of
interlocked waves of opposite spins in the laboratory frame

for long quasi-one-dimensional dots. The appearance of the
spin-density wave for even electron number amounts in spin
symmetry breaking. Recently,16 it was found that for evenN
the formation of the spin density wave in the density func-
tional theory accompanies the Wigner crystallization. But in
the present study we find that for the exact solution spin
symmetry is conserved and Wigner crystallization is associ-
ated with the inner space spin ordering. In the exact solution
the interlocked spin densities in the laboratory frame can
only be observed for odd numbers of electrons, but the pre-
sented five-electron case shows that this effect is not neces-
sarily related with Wigner crystallization. In the exact solu-
tion the electrons with opposite spins avoid one another in
the inner space. A mean field approach can only account for
this effect by symmetry breaking. The reason for the occur-
rence of spin symmetry breaking in the mean field approach
for large single-dimensional dots are similar to the origin of
the broken spatial symmetry mean field solutions for the
magnetic field induced Wigner crystallization in circular
structures.12

In large systems the spin-independent PCF plots become
identical for all states degenerate with the ground state[cf.
spin-independent PCFs for the four-electron degenerate 0+
and 1− states in Figs. 8(b) and 8(c)]. This means that in
Wigner-molecule states electrons avoid one another with the
same efficiency independently of their spins. As a matter of
fact this is the origin of the appearance of the ground state
degeneracy in the Wigner molecule regime. One-dimensional
Wigner molecules present pronounced magnetic properties
related to the long-range spin ordering in the inner coordi-
nate space. This ordering for different degenerate spin eigen-
states may be typical for ferromagnetic, antiferromagnetic or
even an other form of order. Due to the vanishing energy
spacing between the different spin states the spin magnetic
properties of Wigner molecules are of a very soft character.
The Wigner molecules should be extremely susceptible to
any spin-dependent interactions. In particular, even a weak
additional effect promoting the spin-polarized phase can re-
sult in spin polarization of the system. A possible spin polar-
ization of the one-dimensional electron gas has been found2

in transport measurements.

VII. CONCLUSIONS AND SUMMARY

We have studied the ground and excited states of electron
systems confined in quasi-one-dimensional quantum dots us-
ing an exact diagonalization approach. For large systems we
found Wigner localization which appears not only in the

FIG. 9. Spin-up(solid lines) and spin-down(dashed lines) den-
sities for the ground-state 5-electron system 1/2+ withSz=" /2 for
different system sizes.

FIG. 10. PCFs for five elec-
trons in the state 1/2+ ford=100
(a), 200 (b), and 300 nm(c). The
position of the fixed electron is
marked by a thin vertical line.
Solid lines show the spin-
independent PCF, dashed(dotted)
lines show the opposite(same)
spin PCF.
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ground state but also for several excited states which even-
tually leads to the degeneracy of the ground state in the large
d limit. We have considered spin and spatial parity of states
forming Wigner molecules. We have shown that the parity of
the spin-polarized state which forms a Wigner molecule is
strictly determined by the number of electrons.

We have discussed the effect of a central attractive defect
which destroys Wigner crystallization for an even number of
electrons allowing more states to become degenerate with
the ground state in the weak confinement limit. For odd elec-
tron numbers the central defect enhances the localization of
the electron occupying the central position in the Wigner
molecule and does not affect the ground state degeneracy.

We have investigated the spin-ordering effects associated
with Wigner crystallization. We have found that for small
dots the spatial spin ordering in the inner coordinates has a
short-range character and results mainly from the Pauli ex-
clusion principle. The long-range spatial spin order appears
only in the Wigner molecule regime when the electrons oc-
cupy distinct sites within the quantum dot. We conclude that

in one-dimensional quantum dots the Wigner crystallization
is a necessary condition for the long range spin ordering to
appear. We have identified the effect of spin symmetry break-
ing observed in the density functional theory as a tendency
of the mean field method to mimic the internal-space spin
ordering present in the exact solution for the Wigner mol-
ecule regime.
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