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Abstract: We present a numerical solution of the Poisson-Schrödinger problem for a semiconductor

nanostructure containing a single quantum dot. The main outcome of our work is the lateral

confinement potential, which determines the electronic properties of the nanodevice. We study the

real nanodevice with cylindrical symmetry, which allows us to solve the three-dimensional problem

on a two-dimensional mesh. We discuss the self-consistency of the solution with respect to the

distribution of ionized donors inside the nanodevice.
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1. Introduction

Enormous progress in electronics of the last few years mainly results from

miniaturization of electronic circuits. It is expected that within the next few years

miniaturization of electronic devices will achieve the regime in which quantum effects

occur to their full extent. Therefore, it is necessary to include quantum effects into

the study of sub-micrometer electronic devices. Quantum effects are dominant in

nanometer-sized quantum dots (QDs) [1]. QDs are often called artificial atoms [2], as

in a QD, similarly as in a natural atom, electrons confined in an external potential form

discrete energy levels. The confining potential determines the electronic properties of

the QD, such as the number of localized electrons (quantum capacity) and the energy

spectrum. The confinement potential can be formed by a system of barriers created

by the use of two kinds of materials. Such potential is build-in and cannot be altered

after the QD’s fabrication. The confinement potential can also be formed by external

voltages applied to electrodes attached to the nanodevice. Tuning the electrostatic

potential created by the electrodes makes it possible to control QD properties [3–5].

In most of the theoretical papers on QD’s, a model potential is used in order to

approximate the real confinement potential. Model confinement potentials are usually
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in the form of rectangular wells or harmonic potentials and lead to a qualitative

description of QDs only. In the present paper, we discuss a nanodevice [6–9] for

which it is possible to calculate confinement potential from the first principles of

electrostatics.

A schema of the nanodevice, which was constructed and studied by Ashoori

et al. [6–9], is shown in Figure 1a. The nanodevice was build on the basis of a planar

structure consisting of doped and undoped GaAs and AlGaAs layers. The bottom

electrode is formed by a GaAs substrate layer heavily doped with donors. The

following sequence of layers was grown on the substrate: a 60nm GaAs spacer layer,

a 12.5nm AlGaAs tunnel barrier, a 17.5nm GaAs quantum well, in which the electrons

are localized, and a 50nm AlGaAs blocking layer. This blocking layer consists of two

parts: a 15nm undoped layer, which adheres to the quantum-well layer, and a 35nm

donor-doped layer. Above the blocking layer, there is a GaAs cap of 30nm height and

diameter ranging from 300nm to 1500nm. The entire nanostrucure is covered with

metal, which forms the top gate.

Throughout the present paper, we consider a nanostructure with a cap of the

diameter of 1100nm. Voltage, Vg, applied between the bottom and top electrodes

generates an electrostatic field inside the nanodevice. The cap of the nanodevice [6–9]

produces the inhomogeneity of the electrostatic field which is the source of lateral

confinement, i.e. confinement of electrons in the x− y plane. The confinement in

the vertical (z) direction results from band offset (cf. Figure 1b). The depth of the

corresponding potential well is ∼ 0.2eV.

Figure 1. (a) A schema of the model nanodevice; the center of the cylindrical coordinate system

is at the substrate-spacer interface; (b) the total potential energy Utot of an electron as a function

of cylindrical coordinates r and z

2. Model

The electrostatic potential depends on the voltage applied to the gate, the

geometry of the nanodevice, the ionized donor distribution, the charge induced on

the metallic gate, and the charge of electrons confined in the QD. We calculate
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the electrostatic confinement potential by solving the Poisson-Schrödinger problem,

which is composed of two parts. The charge density distribution of electrons localized

in the QD is determined by their wave functions, which are the outcome of the

quantum problem, while the electrostatic potential is calculated from the Poisson

equation, i.e. from classical electrostatics. Potential ϕe generated by the electrons

confined in the QD plays a different role than potential ϕb, which stems from other

sources. Therefore, we use the superposition rule and separate the total electrostatic

confinement potential, ϕelst, as follows:

ϕelst=ϕe+ϕb. (1)

Potential ϕb confines the electrons and is substituted into the Schrödinger equation as

a part of the external potential. The potential created by the QD-confined electrons

can be approximated with a Hartree potential of the form:

ϕe(r)=
e

4πεε0

∫

ρe(r
′)

|r−r′|
dr′, (2)

where e is the elementary charge, ε is the dielectric constant of GaAs, and ρe is the

charge density of the electrons confined in the QD.

The field generated by the ionized donor centers in the n-doped layers and by

the surface charge on the metallic electrode was found by solving the Poisson equation

in the cylindrical coordinates:
(

∂2

∂r2
+
1

r

∂

∂r
+
∂2

∂z2

)

ϕb(r,z)=−
ρD(r,z)

εε0
, (3)

where ρD is the charge density associated with the ionized donors. Since each donor

ionization event results from the transfer of a single electron from the donor level to

the conduction band’s bottom, we assume that the Fermi-Dirac distribution can be

applied to the ionized-donor charge density, which leads to:

ρD(r,z)=
nD

1+exp
(

eϕelst(r,z)+ED
kBT

) , (4)

where ED is the donor ionization energy, kB – the Boltzmann constant, T is the

temperature, and nD is the concentration of the donors.

At low temperatures (experiments [6–9] were performed at 0.1K), the distri-

bution of the ionization events as a function of the electron energy is almost binary

in character. A single donor becomes ionized if the potential energy the of electron

bound to the donor, i.e. −eϕelst(r,z), exceeds the donor ionization energy. Thus, we

obtain the following donor-ionization condition:

ρD(r,z)=

{

0 if −eϕelst(r,z)<ED,
nD if −eϕelst(r,z)>ED.

(5)

In the present paper, we have chosen the potential of the bottom electrode as the zero

point of the electrostatic-potential scale.

The charge density of ionized donors is the source of one component of the

electrostatic field and – according to condition (5) – depends on the total electrostatic

field. Therefore, we have to use the self-consistent iterative method in order to solve the

Poisson-Schrödinger problem. In the first step of the iteration procedure, we assume
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the absence of charge in the QD. The calculations are performed until self-consistency

is achieved. Unfortunately, this procedure is numerically unstable at low temperatures.

We remove this instability by simulating the physical process of cooling the system,

which allows us to achieve the convergence of the numerical method. We assume

that cooling starts at a quite high temperature (T ' 15K), which smooths the sharp

boundaries of the ionization region (cf. Figure 2a). Next, we slowly decrease the

temperature to 0.1K.

Figure 2. Spatial distribution of the ionized-donor charge density: (a) for T =15K and an empty

QD, (b) for T =0.1K and an empty QD, (c) for T =0.1K and a single electron localized in the QD,

(d) for T =0.1K and a single electron localized in the substrate layer

To solve the Poisson equation (3), boundary conditions need to be applied to

potential ϕb on the surface enclosing the calculation domain. The boundary conditions

can be conveniently determined for the total electrostatic potential, ϕelst. Potentials

ϕb and ϕelst are identical if the QD is empty. If the QD contains electrons, we calculate

the boundary values of ϕb from Equation (1). Since the nanostructure is cylindrically

symmetrical, we apply the boundary conditions to the cylinder surface. On both (top

and bottom) cylinder bases the boundary conditions are set by the voltages applied

in the experiments [6–9]. At the metal-semiconductor interface, we additionally take

into account the Schottky barrier, φB = 0.65V, and put ϕelst = Vg−φB at the top

gate. We place the bottom cylinder base deep into the substrate, where ϕelst = 0.

The radius of the cylinder is so large that the electric field on the side surface of the

cylinder is approximately parallel to the z axis. In this case, the Poisson equation

becomes one-dimensional and only voltage Vg is needed to determine ϕelst(z). Since

both the electron charge and potential ϕb are negative, in Figure 3 we display
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the electrostatic potential energy, Ub, of an electron instead of the electrostatic

potential, i.e.:

Ub(r,z)=−eϕb(r,z). (6)

Figure 3. Electrostatic potential energy, Ub, of an electron (dashed line) and the charge density

of ionized donors (solid line) as functions of z drawn at a distance from the cylinder axis

Figure 3 shows Ub(z) which corresponds to the boundary condition on ϕb on

the cylinder’s side surface. We obtain a more appealing and clearer picture when

displaying the total energy of the electron (cf. Figure 1b). Total potential energy

Utot is the sum of the electrostatic potential energy and the band offset energy. Band

offsets are clearly visible in Figure 1b.

The Poisson equation (3) was solved numerically on a mesh. The system’s

symmetry allowed us to use a two-dimensional mesh. Potential ϕb(r,z) was calculated

using the relaxation method with a multigrid. In the inner part of the integration

domain, the second derivative in Equation (3) was approximated by the five-point

formula. We used three-point approximation only for the points at the boundary.

When solving the Poisson equation along the symmetry axis we encountered divisions

by 0 resulting from the second term on the left side of Equation (3). We removed this

singularity by using the following property of the potential:

∂ϕb(r,z)

∂r

∣

∣

∣

∣

r=0

=0,

which results from the existence of a local extremum of the potential for r= 0. We

interpolated the value of ϕb(0,z) using a parabolic form:

ϕb(0,z)=
1

3
[4ϕb(∆,z)−ϕb(2∆,z)], (7)

where ∆ is the mesh step of the radial coordinate.

In Figure 1b, we display the total potential energy, Utot(r,z), calculated for

the gate voltage of Vg =−0.55V for an empty QD. If an electron is confined within

the QD, we introduce Utot into the Schrödinger equation as the external confinement
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potential. For a single electron, the Schrödinger equation in the cylindrical coordinates

has the following form:

−
h̄2

2m∗

(

∂2

∂r2
+
1

r

∂

∂r
+
l2

r2
+
∂2

∂z2

)

Ψ+UtotΨ=EΨ, (8)

where l is the orbital-momentum quantum number, m∗ is the effective band mass of

the electron in GaAs, Ψ is its wave function, and E is its energy.

The Schrödinger equation (8) can be solved by the imaginary time method [10],

which is described in the Appendix. The mesh used to solve Equation (8) in the

r-coordinate is four times larger than that used in the Poisson equation (3). The

electron wave function, obtained from Equation (8), is used to calculate the electron

charge density according to:

ρe(r)=−e|Ψ(r,z)|
2. (9)

This charge density is substituted into Equation (2) to calculate potential ϕe, which

is then used to modify the boundary conditions for potential ϕb. When changing the

boundary values of the total potential, we simultaneously change this potential in the

entire domain of calculations. Therefore, this procedure is repeated until convergence

is reached. The electron energy converges quickly, viz. in a dozen iterations. It is more

difficult to obtain a stable distribution of the ionized donors at the real, i.e. very low

temperature. We have solved this problem by introducing the simulated annealing

method described above.

input parameters

ρD = 0, ρe = 0, ϕe = 0

ϕ
j
b from

Poisson equation

ϕj
e from

Schrödinger equation

ρe from
Equation (10)

ϕe from
Equation (2)

Ej ?
= Ej−1

END

T = 15K

ϕi
b = 0.1ϕi

b + 0.9 ϕi−1

b

ρD from Equation (4)

ϕi
b from

relaxation method

boundary conditions
from Equation (6)

ρi
D

?
= ρi−1

D

T
?

< 0.1KYesNo

Yes No

Yes No
T = 0.95T

Figure 4. A block diagram of the self-consistent algorithm for a solution

of the Poisson-Schrödinger problem
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A block diagram of the algorithm is depicted in Figure 4. The main iteration

loop is shown on the left side of this figure. The loop is terminated when self-

consistency is reached between the electron charge density and the electron energy.

The inner iteration loop, which ensures self-consistency between the ionized-donor

charge density and the electrostatic field is shown on the right side of Figure 4.

3. Results and discussion

The temperature dependence of the ionized-donor distribution is shown in

Figures 2a and 2b. For T = 15K (cf. Figure 2a), we have obtained a smooth border

between the charged and neutral regions of the substrate. However, this border

becomes sharp for T = 0.1K and the space-charge distribution function is binary

in character (cf. Figure 2b). The distributions shown in Figures 2a and 2b have been

obtained for an empty QD. These distributions lead to the electrostatic potential

energy of contours shown in Figure 6a. We see that there exist two regions in the

nanodevice with negative potential energy, in which the electron can be localized.

The first region, with a deeper potential well, is located in the quantum-well layer

(dark gray area in Figure 6a). The second region is wider and is located in the spacer

layer (light gray area in Figure 6a).

Figure 5. Electron charge density ρ as a function of cylindrical coordinates r and z for

(a) an electron localized in the spacer, and (b) an electron localized in the quantum well

The presence of an electron in the QD changes both the potential ϕb and the

distribution of ionized donors in the substrate. The charge density for the electron

localized in the QD is shown in Figure 5b. In this case, the ionized-donor distribution

changes only slightly (cf. Figure 2c). At the same time, an electron localized in the

spacer with the charge density as shown in Figure 5a induces a small island of ionized

donors in the near-axis area (cf. Figure 2d). In both cases, the presence of an electron

entails a deepening of potential energy (cf. Figures 6b and 6c).

4. Summary

In the present paper, we have presented a method to solve the Poisson-

Schrödinger problem for an electrostatic QD. We have shown how we can determine

the profile of the electrostatic potential in the entire nanodevice and the charge

density of electrons confined in the QD. The approach proposed in our paper is based

on the iterative procedure, which allows us to obtain self-consistency between the

electrostatic potential, the charge density of electrons localized in the QD and the
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Figure 6. Contour lines of total potential energy Utot of an electron as functions of cylindrical

coordinates r and z. The regions of the electron’s possible localization are marked light gray (the

spacer layer) and dark gray (the quantum-well layer). The thick solid line corresponds to Utot=0

distribution of ionized donors. We have found that the application of the simulated

annealing method with the Fermi-Dirac distribution ensures convergence of the

iterative procedure. This approach partly simulates the physical processes in the

nanodevice. The most interesting physical outcome of the paper is the discovery of two

distinct regions of the nanodevice in which electrons can be localized. Therefore, we

obtain a double QD in a single-QD nanostructure. As a consequence, the distribution

of ionized donors and the profile of the electrostatic potential depend on the region

in which the electrons are actually localized.

5. Appendix: The imaginary time method

The imaginary time method is used to find stationary solutions to the

Schrödinger equation [10]. This method is faster than the diagonalization methods

and does not require putting the Hamiltonian into a matrix form. It can be used to

solve eigenproblems on both two- and three-dimensional grids. Let us consider the

time-dependent Schrödinger equation:

ih̄
∂

∂t
φ(r,t)= Ĥφ(r,t), (10)

where r denotes the set of spatial coordinates. If we replace in Equation (10) the real

time variable t by an imaginary variable defined as τ = ith̄, we obtain:

∂

∂τ
φ(r,τ)=−Ĥφ(r,τ). (11)

The formal solution of Equation (11) has the following form:

φ(r,τ)= exp(−Ĥτ)φ(r,0). (12)

An expansion of function φ(r,0) on the basis of the Hamiltonian eigenfunctions

leads to:

φ(r,τ)= exp(−Ĥτ)
∑

cnΨn(r)=
∑

exp(−Enτ)cnΨn(r). (13)

In expansion (13), the terms corresponding to the excited states disappear exponen-

tially with growing τ . For a large enough τ remains only the term which corresponds
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to the ground state, Ψ0, with the lowest energy, E0. The eigenfunction and energy of

the ground state can be obtained by the iteration procedure. In the initial step, we can

generate the starting values of the ground-state wave function as random numbers.

Next, we use them in the procedure:

φ(r,τi)=φ(τi−1)−∆τĤφ(τi−1), (14)

until the convergence is reached. In the numerical version of Equation (14), we use

finite-difference approximation for operator Ĥ. Step ∆τ cannot be too small to obtain

convergence faster. At the same time, ∆τ cannot exceed a critical value, since for too

large ∆τ the procedure becomes divergent. The average value of energy:

〈φ(r,τi)|Ĥ|φ(r,τi−1)〉, (15)

can be treated as a test parameter for convergence. After convergence is reached, the

values of φ(r,τi) are used as the ground-state wave function Ψ0(r).
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