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Abstract: We discuss a possible realization of a quantum controlled-NOT gate with the use of two

coupled quantum dots. Transitions between quantum states of a computational basis are driven by

the microwave π-pulse. The parameters of the proposed nanodevice have been optimized in order to

make the operation cycle of the gate as short as possible. Numerical solutions of the time-dependent

Schrödinger equation allow us to simulate transitions between the quantum states which correspond

to the subsequent stages of the gate’s operation. The performed time-dependent simulations are

a test of realizability of the quantum controlled-NOT gate in the nanodevice.
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1. Introduction

In quantum computations [1], information is stored with quantum bits (qubits)

and logical operations are performed on qubits with quantum logic gates. A single

qubit can be represented by any two-level quantum system. Many-qubit states are

constructed as tensor products of single-qubit states and are known as quantum regis-

ters [1].A quantum logic gate corresponds to the operation of a unitary transformation

on a quantum register. There exists [2] a universal set of quantum logic gates which

consists of all one-qubit gates and a single two-qubit gate, namely a controlled-NOT

gate (CNOT). If we had a CNOT quantum gate at our disposal, we would approach

a possible realization of a quantum computer.

The classical CNOT gate is presented in Figure 1, in which line aa′ is called

a control line because a logical state of this line decides about the state of the output

of line bb′, known as the target line. In the control line, the output state is always the

same as the input state. The CNOT gate works like a NOT gate only if the control

line is in logical state 1. In the opposite case, line bb′ copies the input state to the
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Figure 1. Scheme of the

classical CNOT gate

a b a′ b′

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Figure 2. Truth table

of the CNOT gate

output, i.e. it does nothing. All the logical states of the CNOT gate are scheduled in

the truth table shown in Figure 2.

Nowadays, physical realizations of the classical CNOT gate are reaching a natu-

ral limit of miniaturization, i.e. sizes of natural molecules. Even above this limit, i.e.

for nanometer-sized electronic devices, quantum effects have become so strong that

they can disturb the functionality of classical gates. However, we can directly exploit

quantum effects to perform computations [1], which leads to the idea of a quantum

computer [3]. The trend towards miniaturization is not the only reason of the recent

interest in the physical realization of the quantum computer. It is expected that – due

to the specific features of quantum systems – the future quantum computer should

be more effective in some applications than present-day classical computers.

In the present paper, we study a possible physical realization of the quantum

CNOT-gate model first proposed by Barenco et al. [4]. The model exploits the quantum

states of two electrons in two coupled quantum dots. The single quantum dot (QD)

is a nanostructure in which the electrons, confined in all three spatial dimensions,

form localized states with discrete energy levels [5]. In this paper, we consider two

QDs separated by a barrier layer. There are two crucial differences between classical

and quantum logic gates. First, a classical electronic device contains physical input

and output as well as physical wires, through which voltage signals are transmitted.

In a quantum system, information is gathered in qubits. A qubit is represented by

a quantum state vector in a two-dimensional Hilbert space, i.e.:

|ψ〉=α|0〉+β|1〉, (1)

where states |0〉 and |1〉 form a computational basis, and complex numbers α and β
satisfy normalization condition |α|2+ |β|2=1. In quantum computations, we will use
the initial and final quantum states of the system as its input and output. Moreover,

instead of voltage signals transmitted via wires, we will deal with a quantum evolution

of the system.

The model of the CNOT gate studied in the present paper includes all the

lowest-energy states of electrons confined in QDs. For a single electron confined in

a single QD, these are the ground state (denoted by |0〉) and the first excited state
(denoted by |1〉). For a system of two electrons confined in two weakly coupled QDs we
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take into account ten subsequent lowest energy levels. The corresponding two-qubit

states are constructed with the use of the following computational basis:

{|00〉,|01〉,|10〉,|11〉}, (2)

where |ij〉≡ |i〉|j〉 and i,j=0,1. The physical meaning of two-qubit basis states (2) is
the following: state |00〉 describes a system in which each of the electrons occupies the
single-particle ground state in a distinct QD, while in state |01〉 one of the electrons
is in the ground state in the first QD and the other is in the first excited state in

the second QD, etc. We assume throughout the present paper that QDs are formed

by different asymmetric quantum wells [6]. Therefore, we can distinguish the control

and target QD’s. The profile of the potential confining the electrons in the z direction

is shown in Figure 3. We will treat the left QD with the one-electron state |i〉 as the
control QD (c) and the right QD with the one-electron state |j〉 as the target QD (t).

Using the operator formalism, the quantum CNOT logic gate is defined as

follows [1]:

ÛCNOT|00〉= |00〉,
ÛCNOT|01〉= |01〉,
ÛCNOT|10〉= |11〉,
ÛCNOT|11〉= |10〉,

(3)

where ÛCNOT is the unitary operator. Each operation given by Equations (3) has its

counterpart in truth table (Figure 2).

An important difference between the classical and quantum CNOT gate follows

from the quantum-mechanical superposition principle. According to this principle, the

qubit (Equation (1)) defined as a superposition of the two different quantum states

of the system is also the quantum state of the considered system. The superposition

principle, together with the linearity of operator ÛCNOT, can be applied to obtain the

entangled state:

ÛCNOT(α|0〉+β|1〉)|0〉=α|00〉+β|11〉. (4)

In order to realize a quantum CNOT gate we need to find physical realizations of the

computational basis and operator ÛCNOT. A physical system ideal for this purpose is

required to possess only four quantum states [4]. However, the real quantum world is

more complicated than that. The present paper deals with this problem.

2. Model of a quantum CNOT gate

We consider two electrons in three-dimensional, cylindrically symmetric nanos-

tructure composed of two QDs fabricated from a GaAs/AlGaAs heterostructure. The

GaAs-made QDs are separated by a AlGaAs barrier layer, which is so thick that

electron tunneling can be neglected. We assume that the lateral confinement poten-

tial, i.e. the potential in the x−y plane, is much greater than the vertical confine-
ment potential, i.e. the potential in the z direction, and can be approximated by the

harmonic-oscillator potential. Then, the three-dimensional problem can be reduced to
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a one-dimensional problem with the effective electron-electron interaction potential

energy given by [7]:

Ueff (z1,z2)=
e2
√
πβ

4πε0ε
eβ|z1−z2|

2

erfc(
√

β|z1−z2|), (5)

where ε0 is the electric permittivity of vacuum, ε is the relative electric permittivity

of GaAs, β = meω⊥/2h̄, me is the effective electron band mass, and h̄ω⊥ is the

excitation energy in the lateral harmonic-oscillator confinement potential. Therefore,

each electron is described by only one spatial coordinate. Hence, we deal with a two-

particle system described by the Hamiltonian:

Ĥ(z1,z2)=−
h̄2

2me

(

∂2

∂z21
+
∂2

∂z22

)

+U(z1)+U(z2)+Ueff (z1,z2)+2h̄ω⊥, (6)

where U(zi) is the vertical confinement potential energy of the ith electron.

The vertical confinement potential U(zi) is asymmetric and different for each

of the QDs (cf. Figure 3). The asymmetry of U(zi) leads to the electron densities

shown in Figure 3. For the ground state and the first excited state, the electron

densities are shifted in directions opposite to those for the symmetric confinement

potential. Therefore, the interaction energy between electrons confined in distinct

QD’s will depend on their quantum states. We note that this effect of asymmetry

is equivalent to the effect of an external electric field. However, an application of

electric field can cause an escape of electrons from QD’s shallow potential wells.

As a consequence of the asymmetry of the confinement potential, electron energy

levels are altered and take on different values. This change plays a crucial role in the

operation of the CNOT gate. In the following, we focus on two energy differences,

∆EI =E00−E01 and ∆EII =E10−E11, where Eij denotes the energy of state |ij〉
of the computational basis (see Figure 5). Energy separations ∆EI and ∆EII should

take on clearly different values, which allows for selective absorption of electromagnetic

radiation. According to Heisenberg’s uncertainty principle, the longer the transition

time between given energy levels, the smaller the misfit between the transition energy

and the photon energy. At the same time, the gate’s working time should be as short

as possible. This requirement results from the necessity of minimization of interaction

with the environment. Interaction of quantum system with the environment leads

to decoherence, which introduces random relative phases into the qubits, which – in

turn – can destroy the output results. The time that passes till the moment when

the system becomes completely perturbed, i.e. loses its phase coherence, is known

as decoherence time. Therefore, the time of the gate’s working cycle should be much

shorter than its decoherence time.

The CNOT gate will operate properly only if the energy levels associated with

the computational basis states are distinctly separated. In the present work, we have

optimized the parameters of the nanodevice in order to make the working-cycle time

as short as possible.

The CNOT-gate working process consists of three steps. In the first step, the

electron system is prepared in the ground state |00〉 (this step is called relaxation). In
the second step, we set up the quantum state of the control dot, which can be either
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Figure 3. Vertical confinement potential and electron charge density for the ground state |0〉
(lower curve) and the first excited state |1〉 (upper curve) as functions of z;

dashed lines show the ground-state and the first excited-state energy levels of a single

electron confined in a single QD; the thicknesses of the shallow (deep) potential wells

in the control and target QDs are denoted by Sc(Dc) and St(Dt), respectively

|0〉 or |1〉. In the last step, we simulate the action of the ÛCNOT operator and analyze
the output state.

3. Parameters of the nanodevice

The calculations have been performed with the material parameters of GaAs,

i.e. me = 0.067me0, ε= ε∞ = 11, where me0 is the free electron mass, and ε∞ is the

high-frequency relative electric permittivity. We have optimized the other parameters

of the nanodevice in order to obtain simulated operation of the CNOT gate with

high fidelity. For this purpose, the electron-electron interaction should be strong

for transition energies ∆EI and ∆EII to be distinctly separated. The interelectron

interaction energy can be increased by either applying stronger lateral confinement or

decreasing the distance between the electrons. The first condition is fulfilled if lateral

confinement energy of h̄ω⊥ = 40meV is achieved, which is a rather large value, but

technologically accessible. In order to decrease the distance between the electrons, we

can decrease either the width of the barrier layer or the QD sizes. However, the barrier

layer cannot be too small, since we want to neglect the tunneling effects.

In the states of our computational basis (2), electrons are fully localized in the

QDs, thus allowing us to distinguish between the control and target QD. As the QD

sizes in the z direction decrease, the energy separation between the ground and the

first excited state increases. If this separation exceeds h̄ω⊥, excitations between the

states of the lateral confinement potential have to be included, which can disturb

the gate’s performance. We have taken this requirement into account by choosing the

widths of the deep potential-well regions Dc=Dt=4nm for both QDs and the widths

of the shallow potential-well regions (Sc and St) large enough for the energy split to

be less than h̄ω⊥. The different values of widths Sc and St for the two QDs lead to

splitting of energy levels E01 and E10, which are associated with states |01〉 and |10〉,
respectively. When setting the potential-well depths in regions Sc,t and Dc,t, we have

required the ground-state energy level to be located close to the shallow potential-well
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bottom and the electron density to be localized in region Dc,t for the ground state

and in region Sc,t for the first excited state (cf. Figure 3).

Taking into account all the above-mentioned physical aspects, we optimized

the model nanodevice so that transition energies ∆EI and ∆EII were considerably

different, expecting to obtain short-time operation cycles of the gate. The values of

nanodevice parameters, for ∆EI−∆EII =1.46meV, are listed in Table 1.

Table 1. Parameters of the nanostructure used in the simulations

width [nm] depth [meV]

Sc 19 200

Dc 4 310

barrier 10 0

St 4 310

Dt 25 200

4. Numerical method

We calculate the two-electron eigenstates of Hamiltonian (6) using the imagi-

nary time step method [8]. According to this method, we replace the derivatives in

the time-dependent Schrödinger equation:

ih̄
∂ψ

∂t
(z1,z2,t)= Ĥψ(z1,z2,t), (7)

with their finite-difference approximations and time by the pure imaginary variable

t= iτ . After simple transformations [8], we obtain the following equation:

ψn+1=ψn−∆τ
h̄
Ĥψn, (8)

which can be used to find the ground-state wave function. The energy of this state

is found as the expectation value of Hamiltonian Ĥ. Superscript n in Equation (8)

labels the subsequent iterations. Step ∆τ has been chosen so that the procedure is

as fast and stable as possible. The excited-state wave functions are found using the

same method, complemented with orthogonalization to lower-energy wave functions.

The real-time evolution of the system has been realized using the iterative

method, which is symmetric with respect to inversion in time [9]:

ψn+1=ψn−1− i

h̄
∆tĤ ′ψn. (9)

In Equation (9), Hamiltonian Ĥ ′= Ĥ+Ĥint includes operator Ĥint of the interaction

of the electron system with radiation. Explicitly:

Ĥint(z1,z2)=Acos(ωt)p̂=−ih̄Acos(ωt)(
∂

∂z1
+

∂

∂z2
), (10)

where A is the amplitude of the radiation field, ω is the radiation’s frequency, and p̂

is the total momentum operator.

5. Results and discussion

The eigenfunctions of Hamiltonian (6) depend on two coordinates, z1 and

z2. According to the probabilistic interpretation of quantum mechanics, the square
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of the absolute value of the wave function, |ψ(z1,z2)|2, represents the density of
the probability that one of the electrons is placed in z1 and the other in z2. The

probability density, calculated for the ten lowest-energy states, is shown in Figure 4.

The corresponding ten lowest-energy levels are listed in Table 2 and shown in Figure 5.

In Figure 4 and Table 2, we have introduced number ν, which numbers the states

according to the increasing energy. We can treat ν as a convenient quantum number.

In the states chosen as the states of the computational basis (2), electrons should be

localized in different QDs. It can be seen in Figure 4 that this condition is satisfied only

for the states with quantum numbers ν = 1,4,6,8,10. However, the state with ν = 8

does not belong to the computational basis selected in the present model, since in

this state the electron in the control dot is in the ground state and the electron in the

target dot is in the second excited state. Table 2 enables us to find the correspondence

between the states numbered by ν and the states of the computational basis (2).

Figure 4. Contours of the two-electron probability density for the first ten lowest-energy states

on plane z1−z2; d denotes the diagonal

The probability density is symmetric with respect to the interchange of the

electron coordinates, i.e. |ψ(z1,z2)|2 = |ψ(z2,z1)|2. This symmetry is equivalent to
the reflection symmetry with respect to diagonal d in Figure 4. It is inconvenient to

interpret two-particle densities; therefore, in Figure 6, we present one-particle densities

defined as follows:

ρ1(z1)=

∞
∫

−∞

dz2|ψ(z1,z2)|2. (11)

The present approach yields a richer energy spectrum of the two-electron system

than that used in the simple model [4]. The extra energy levels associated with

states ν = 2,3,5,7,8,9, .. . could in practice inhibit proper execution of the gate due
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Table 2. (a) Lowest eigenvalues of Hamiltonian (6), computation-basis states are listed in the

third column; (b) transition energies between the computational basis states

(a)

ν energy [meV] |ij〉
1 -362.33 |00〉
2 -347.63

3 -347.56

4 -331.45 |01〉
5 -326.13

6 -324.75 |10〉
7 -317.44

8 -306.50

9 -299.43

10 -292.40 |11〉

(b)

energy difference [meV]

E01−E00 30.89

E11−E10 32.35

E10−E01 6.7

E10−E00 37.59

E11−E01 39.04

Figure 5. Energy levels of (a) one-qubit and (b) two-qubit states. |0〉c,t and |1〉c,t denote the
ground and the first excited states of the electron in the control and target QDs, respectively;

in (b), the most relevant energy separations are shown by arrows

to the increasing probability of unwanted transitions. Therefore, we have chosen the

parameters of the nanodevice so that transitions to these states are less probable.

Transitions between the states of the computational basis, which form the

operation cycle of the CNOT gate, are induced by the interaction of the electron

system with radiation. These transitions will occur with probabilities close to 1 if

the time of interaction is determined precisely. The interaction time is defined by the

expression A〈ψin|p̂|ψfin〉t=π, where |ψin〉 and |ψfin〉 denote the initial state (before
the transition) and the final state (after the transition), respectively. A radiation pulse

with such a duration time is known as a π-pulse.

We have simulated the behaviour of a single electron in a single QD interacting

with radiation. The photon energy has been matched to the energy difference between
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Figure 6. One-particle electron probability densities (Equation (11)) corresponding to the four

states of the computational basis and the vertical confinement potential as functions of z;

coordinate z varies in the horizontal direction

Figure 7. Time evolution of the one-electron probability density (Equation (11))

and the corresponding Rabi oscillations of probability Pi(t)

the ground and the first excited state. Figure 7 shows the calculated time evolution

of the one-electron probability density (Equation (11)). We have also plotted in

Figure 7 probability Pi(t) = |〈ψi|ψ(t)〉|2, where |ψ(t)〉 is the time-evolving state and
the i subscript denotes the initial state. The lower panel of Figure 7 shows that
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Figure 8. Working cycle of the CNOT gate when the control dot is prepared in state |1〉: (a) the
relaxation step, (b) preparation of the control dot, (c) simulation of the ÛCNOT operation;

as a result, the output qubit is changed

Figure 9. Working cycle of the CNOT gate when the control dot is prepared in state |0〉: (a) the
relaxation step, (b) preparation of the control dot, (c) simulation of the ÛCNOT operation;

as a result, the output qubit is unchanged

electron density oscillates between the S and D regions of the QD, i.e. between the

|0〉 and |1〉 states. If the interaction with radiation is not terminated, the system will
oscillate between these two states for an infinitely long time. This effect is known as

Rabi oscillations.

The full working cycle of the gate operation is presented in Figures 8 and 9 in

the form of contour plots of the one-electron probability density, ρ1(z1,t). Simulation

results are shown for the two chosen settings of the control QD. In Figures 8 and 9, the

time evolution of the probability density illustrates the quantum transitions between

the states of the computational basis. The stationary one-electron probability densities

of the states involved are displayed in Figure 6. We start each gate operation cycle
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with a relaxation of the system to the ground state. This relaxation process is realized

with the help of the imaginary time step method. Only a few iterations are needed to

prepare the ground state in which one of the electrons is localized in region Dc and

the other – in region Dt (cf. Figure 3). The simulation of the relaxation is depicted

in Figures 8a and 9a.

In the second step, we prepare the state of the control QD. For this purpose, we

simulate the transitions from the ground state to either state |10〉 (Figure 8b) or state
|01〉 (Figure 9b). These transitions are induced by the π-pulse of the electromagnetic
wave with the frequency fitted to the corresponding transition energy. In the first

simulated process (cf. Figure 8b), we can observe that the one-electron probability

density in the control dot is transferred from regionDc to region Sc, which corresponds

to the transition of an electron from the ground state to the first excited state. In the

target dot, however, the one-electron probability density remains unchanged, which

means that this QD remains in its ground state. In the other case (cf. Figure 9b),

a different process is simulated: the electron in the target dot is pumped to the first

excited state and the electron in the control dot remains in the ground state.

After preparing the control dot state, we apply the π-pulse with frequency

adjusted to the |10〉←→|11〉 transition, which realizes the ÛCNOT operation. Figure 8c
shows that – as a result of this operation – the electron in the target dot is transformed

from the ground state to the first excited state, while the electron in the control dot

remains undisturbed. However, if we prepare the system in the |01〉 state, the same
π-pulse has no effect, as illustrated in Figure 9c. We have thus simulated the working

cycle of the CNOT gate with a system of two coupled QDs and two electrons.

The durations of the relevant transitions depend on the amplitude of the

electromagnetic wave: the larger the amplitude, the faster the transition. Nevertheless,

the energetic selectivity of the transitions decreases. For the energy separation

of ∆EI −∆EII = 1.46meV, we have chosen a value of the electromagnetic-wave
amplitude, for which the occupation probabilities, Pi, reach 1 (0) with the fidelity

level of not less than 99.6%. According to the theory, 100% fidelity is reached in the

limit of infinite time of interaction with radiation at an infinitesimaly small radiation

amplitude. The estimated durations of different transitions for the required fidelity

are given in Table 3.

Table 3. Estimated duration of microwave π-pulses for different transitions

transition time [ps]

|00〉−|01〉 29.0

|00〉−|10〉 21.1

|10〉−|11〉 28.6

The decoherence time for GaAs QDs is ∼ 1000ps [4], in our simulation, the total
time of setting the control QD and performing the CNOT operation is estimated to be

49.7ps for the first process (Figure 8) and 57.7ps for the second process (Figure 9).

This means that we can execute less than ∼ 20 operation cycles before decoherence
destroys the qubits. In order to obtain a shorter π-pulse duration in the subsequent

steps of the operation cycle, it is necessary to increase the differences between the

tq408p-e/601 4XII2004 BOP s.c., http://www.bop.com.pl



602 S. Moskal et al.

energy levels associated with the states of the computational basis. It will then be

possible to increase the amplitude of the electromagnetic wave, which will drive faster

transitions.

In summary, the present results suggest that the construction of a quantum

CNOT gate with the use of two coupled QDs is difficult to realize in practice. Our

simulations have shown that the modeled CNOT gate can operate, however, its working

cycle must be shortened if it is to become an effective element of a solid-state quantum

computer.
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