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Abstract
A classical model is presented for magnetic field-induced Wigner crystallization
in electron systems confined within two-dimensional quantum dots. In contrast
to other classical models, this one does not treat an electron as a point charge; the
electron density is assumed to take a Gaussian form corresponding to the lowest
Landau level. Using a Monte Carlo method we have determined the equilibrium
configurations as functions of the magnetic field. We have found a classical
counterpart of the quantum maximum density droplet (MDD) and studied the
breakdown of the MDD into a Wigner molecule as well as the transformations
of the Wigner molecule shape induced by the external magnetic field. The phase
diagram for the classical Wigner molecules has been presented and its qualita-
tive agreement with previous quantum mechanical calculations has been shown.

1. Introduction

In the strongly correlated bulk systems, the electrons can be localized at distinct lattice sites
forming a Wigner crystal [1]. In quantum dots which do not possess translational symmetry,
states with island-like electron localization, called Wigner molecules [2–9, 12–17] are formed.
At high magnetic field the quantum charge density distribution in the inner coordinates becomes
classical [8]. For this reason the classical theory of Wigner crystallization has become of
significant interest over the last decade [18–27]. In particular, the influence of the form of the
confinement and interaction potentials on the symmetry of the confined classical system has
been studied [23]. Recently, an experimental study [28] has been performed in order to find
equilibrium configurations in millimetre-sized charged-ball systems.

The quantum electron system confined in a quantum dot and subject to an external magnetic
field has been studied in a number of theoretical papers [2–9, 11, 12, 29–34]. Much of the
theoretical interest has been aroused by the experimental observation [35] of the decay of
the maximum density droplet (MDD) [29]. The MDD is the phase which appears when all
the electrons become spin polarized by the external magnetic field. In the MDD phase, the
electrons occupy the lowest energy Fock–Darwin states (corresponding to the lowest Landau
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level [8]). The MDD possesses a characteristic single flat maximum of the charge density
distribution. At sufficiently high magnetic field the MDD decays, i.e., is replaced by a
state with higher angular momentum. The MDD can be quite accurately described by the
restricted Hartree–Fock method [11, 29], which means that the electron–electron correlation
is of secondary importance in this phase. On the other hand, the ground state, which appears at
higher magnetic fields after the MDD decay, is strongly correlated. The spatial separation of
the electrons in high magnetic fields leads to the formation of Wigner molecules [2–9]. In the
infinite magnetic field limit, the system becomes classical, i.e., the energy [6] and the charge
distribution can be obtained from the classical physics.

The transformations of the electron charge density distribution have become a subject of
study recently [7, 9, 31, 32]. Reimann et al [7] studied the edge reconstruction in vertical
quantum dots using spin density functional theory. Manninen et al [31] investigated a
system of six electrons using the exact diagonalization method. The authors of [8, 31] found
that the Wigner molecule which is created after the MDD breakdown corresponds to the
electrons forming a hegaxon. At higher magnetic fields this configuration is transformed into
a configuration with one electron at the centre and five other electrons forming a pentagon.
This result was qualitatively confirmed by Yang and MacDonald [32], who addressed the
problem of the occupation of the single-particle angular momentum eigenstates using exact
diagonalization. The authors of [32] found that for less than 14 electrons the charge density
spatial distribution obtained after the MDD decay has a hole at the centre of the dot. This hole
is filled in higher magnetic fields. This effect was also found by Szafran et al [9], who studied
the transformations of the ground state spatial symmetry of Wigner molecules in the magnetic
field regime between the MDD and the classical high magnetic field limit using the multicentre
Hartree–Fock method, i.e., the Hartree–Fock method with the basis functions corresponding
to the lowest Landau level centred around different sites.

The two-electron problem possesses analytical solutions for certain oscillator
frequencies [36]. A number of exact numerical results for few-electron systems have also been
published [11, 12, 30–32]. In this paper we do not solve the many-electron problem by quantum
mechanical means, but reduce it to a form amenable to treatment by the methods of classical
physics. For this purpose we have introduced an electron–electron interaction potential derived
from the assumption that the electrons occupy the lowest Landau level only. Accordingly, the
charge density distribution of the single electron is taken as a Gaussian function corresponding
to the lowest Landau level. In the following, we will show that not only the high magnetic field
behaviour but also some of the most characteristic features of the quantum systems under finite
magnetic fields can be obtained in the framework of classical physics. In particular we show
that the present classical approach reproduces the MDD decay into the Wigner molecule and
the phase transitions (shape transformations) of the Wigner molecules induced by the external
magnetic field. Since the present approach accounts only for the classical potential energy,
it implies that these effects can be qualitatively explained without making reference to the
purely quantum exchange and correlation energy contributions. On the other hand, for this
reason the present approach should not be expected to give quantitative agreement with exact
or approximate quantum calculations for an arbitrary value of the magnetic field.

The paper is organized as follows: section 2 contains the theory; the results and discussion
are presented in section 3; and section 4 contains the conclusions and summary.

2. Theory

We consider a system of N electrons confined in the two-dimensional (2D) quantum dot and
subject to an external magnetic field. In a high magnetic field the influence of the confinement
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potential is of secondary importance and the occupied one-electron states can be identified
with the degenerate lowest energy Landau state. The ground state wavefunction, written in the
Landau gauge, has the form [9]

ψR(r) = (α/2π)1/2 exp[−(α/4)(r − R)2 + (iα/2)(x − X)(y + Y )], (1)

where r = (x, y), the charge density centre position R = (X,Y ) is an arbitrary point on the
x–y plane, α = eB/h̄, B stands for the magnetic field, and e > 0 stands for the elementary
charge. The charge density of the electron described by wavefunction (1) is given by

�R(r) = −e(α/2π) exp[−(α/2)(r − R)2]. (2)

In the limit of infinite magnetic field, �R(r) becomes the point charge distribution.
We assume that the electrons are confined in the harmonic oscillator potential Vconf(r) =

mω2
0r2/2, where m is the effective mass of the electron and ω0 is the confinement frequency.

The potential energy of the single electron with charge distribution (2) in an external field
Vconf(r) is calculated as follows:∫

d2r Vconf(r)
�R(r)
(−e)

= Vconf(R) + mω2
0/α. (3)

In equation (3), the first term is independent of α, i.e., magnetic field B , and is the same as
for the point charge, while the second term is independent of R, i.e., has no influence on the
equilibrium configuration of the Wigner molecule. Therefore, in the calculations, we neglect
the second term. The total potential energy of the N-electron system is a sum of the external
potential energy and the interaction energy, i.e.,

Epot =
N∑

i=1

(
Vconf(Ri) +

N∑
j>i

W (|Ri − R j |, B)

)
. (4)

The potential energy of the electron–electron interactions is equal to the Hartree energy for
the fixed Landau radius and is given by

W (|Ri − R j |, B) =
∫

d2r1 d2r2 �Ri (r1)�R j (r2)
κ

|r1 − r2| , (5)

where κ = 1/4πε0ε and ε is the dielectric constant. The interaction energy (5) can be
calculated from the integral

W (R, B) = κe2

2

√
α

π

∫ π

0
dφ exp

(
−αR2 sin2 φ

4

)
erfc

(√
αR cosφ

2

)
. (6)

Figure 1 displays interaction energy (6) calculated for different magnetic fields and—
for comparison—the Coulomb potential energy of the interaction between the point charges
(e2κ/R). In contrast to the Coulomb potential, interaction energy (6) is finite for R = 0. Its
maximum value at R = 0 increases with increasing magnetic field. Figure 1 shows that the
potential energy of the interaction between the Gaussian charge density distributions becomes
larger than the Coulomb potential energy at some interelectron distance. If distance R grows,
W converges to the Coulomb potential energy. This convergence is faster for the higher
magnetic fields, for which the Gaussian charge density begins to resemble that of the point
charges.

In quantum calculations the width of the Gaussian wavefunctions is often used as a
variational parameter [6, 9, 10, 37] (a detailed discussion of the dependence of this parameter
on the magnetic field for Wigner molecules is given in [10]). However, this approach is not
applicable to the present classical model. In the quantum mechanical approach the kinetic
energy contribution ensures a finite spread of the single-electron wavefunctions. Minimizing
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Figure 1. The potential energy (6) of the interaction between the Gaussian charge densities for
different magnetic fields B and the Coulomb potential energy as functions of the distance R between
the charge density centres.

the classical energy with respect to α would usually lead to a collapse of the single-electron
charge density to the delta-like point charge distribution. In the present paper the fixed value
of parameter α accounts for the external magnetic field and the finite extent of the electron
charge density.

The calculations have been performed for systems of N = 2, . . . , 20 electrons with
m = 0.067 me and ε = 12.9, which corresponds to GaAs. We consider the lateral
confinement energy h̄ω0 = 3 meV, which allows us to address the quantum system studied
in [2, 9, 10, 38].

The interaction potential (6) derived in the present paper is valid under assumption that
only the lowest Landau level (lowest Fock–Darwin band) is occupied. The validity of this
assumption for quantum systems confined in parabolic quantum dots has been checked and
thoroughly discussed in [38] for N = 2, 3, and 4 electrons. This discussion [38] is based
on comparison of the multicentre Hartree–Fock method [9, 10, 38] for the spin polarized
electron system with the exact diagonalization method [38, 39] which assumes neither spin
polarization nor the occupation of the lowest Landau level only. In the multicentre Hartree–
Fock method [9, 10, 38] we construct the orthogonal one-electron wavefunctions as linear
combinations of the N lowest Landau level wavefunctions (1) centred around different points
and in the exact diagonalization method [38, 39] the basis set is taken in the form of Slater
determinants built from several Fock–Darwin single-electron states. Let us briefly summarize
the conclusions of this study [38]. The assumption that only the lowest Fock–Darwin band is
occupied is not applicable for the ground states appearing in magnetic fields lower than those
inducing MDD formation (these states correspond to the lowest Landau level filling factor
ν > 1 [8]). The fields inducing formation of the MDD phase for N = 2, 3, and 4 are equal
to 1.75, 2.13, and 2.3 T [38] respectively. For the MDD (ν = 1) and Wigner molecule states
(ν < 1) appearing for magnetic fields above the MDD decay one, the multicentre Hartree–Fock
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method leads to a certain variational overestimation of the exact energy. This overestimation is
largest in the MDD phase (about 0.5 meV for N = 2, 3, and 4) and tends to zero at the infinite
magnetic field limit [38] as a linear function of 1/B . The energy overestimation is partially
due to a neglected admixture of the states belonging to higher Fock–Darwin bands with the
ground state wavefunction. This admixture is provoked by the electron–electron interaction
and is largest in the MDD state. In the multicentre Hartree–Fock method the electron–electron
interaction takes on the maximum [10] value at the MDD breakdown: equal to 4.5, 10.8,
and 19.4 meV for N = 2, 3, and 4 (the interaction energy per electron equals 2.25, 3.6,
and 4.9 meV respectively). The overestimation of the total energy, which is only partially
related to the neglected contribution of higher Fock–Darwin bands, is a few times smaller
than the electron–electron interaction energy. Therefore, we conclude that the contributions
of higher Fock–Darwin bands to the ground state are already of secondary importance for the
MDD phase. For Wigner molecule states they are even smaller, since the principal effect of
the Coulomb interaction in the Wigner localization regime is the separation of the electron
charges, i.e., the Wigner crystallization itself. Higher Fock–Darwin bands are not necessary
for its description. In [39] the size of the confined charge density calculated with the exact
diagonalization method has been compared to the values given by the multicentre Hartree–
Fock method (cf figure 9 of [39]) as a function of the external magnetic field for N = 4.
The values obtained with the exact and approximate methods agree very well for the MDD
state, for which the applicability of the lowest Landau level could be questioned. For higher
states the multicentre Hartree–Fock method provides an average value around which the exact
charge density radius oscillates [39]. These oscillations are due to the angular momentum
transitions related to changes in occupation of the levels belonging to the lowest Fock–Darwin
band [39]. References [38] and [39] show that in the MDD and Wigner crystallization regimes
the contribution of higher Fock–Darwin bands leads only to secondary quantitative corrections
to the properties of the ground state. On the basis of the above argumentation we conclude that
the adopted assumption of the lowest Landau level (Fock–Darwin band) occupation is very
well justified for the present qualitative considerations on states with ν � 1, i.e. for the MDD
and Wigner molecule states.

3. Results and discussion

In the present paper, we have used the simulated annealing Monte Carlo method in order to find
both the global and local minima of the total potential energy (4) as functions of the external
magnetic field.

The form of the interaction potential directly affects the total charge density. In figure 2,
we illustrate this effect for the simplest case of the two-electron system. In the equilibrium
configuration, the two electrons are situated at the ends of a line segment with the centre located
at the origin, i.e., at the minimum of the external confinement potential. For low magnetic
field (B = 1.5 T) the electron–electron interaction potential (6) is so soft near R12 = 0 that
the equilibrium distance between the centres of the Gaussians (2) is equal to 0. For higher
magnetic fields, the electron–electron interaction potential has a pronounced maximum for
R12 = 0, which shifts the minimum of the total potential energy to the non-zero distance. We
see that the repulsive core is formed in the total potential energy.

The equilibrium distance between the centres of electron localization (R12) has been
drawn in figure 3 for N = 2 as a function of the magnetic field. For B � 1.81 T the
electrons are localized at the origin. For larger B the electrons become spatially separated
and localized around different space sites. The equilibrium distance between the centres of
electron localization passes through a maximum (at B � 6.5 T) and then slowly decreases
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Figure 2. The total potential energy (solid curves), the electron–electron interaction potential
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quantum average value obtained from the exact calculations (dashed line) are also shown. Inset: the
charge density distribution on the x–y plane obtained by the classical approach for four magnetic
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toward R12 = 30.44 nm, which is the equilibrium distance in the system of two point charges.
The growth of the equilibrium electron–electron distance above the value corresponding to
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the point charges is related to the fact that—for the intermediate separations—the charges
distributed according to the Gaussian function repel more strongly than the point charges
(cf figure 1).

Figure 3 also displays the optimum value of the distance between the centres of electron
localization (R12) calculated with the multicentre Hartree–Fock method [9, 10]. According to
the multicentre Hartree–Fock method [9], the MDD is created for B < 5.9 T. Figure 3 shows
that in the MDD stability regime the optimum distance between the centres of wavefunctions (1)
is close to zero. We note that—in the spin polarized quantum system—due to the antisymmetry
of the spatial wavefunction, the distance between the centres of electron localization cannot
fall to zero (that would result in the vanishing of the wavefunction).

Figure 3 shows that the magnetic field dependences of the distance between the centres
of electron localization calculated in the framework of classical and quantum physics exhibit
a remarkable similarity. According to the classical approach, at low magnetic fields, all the
Gaussian charge density distributions are localized at the centre of the quantum dot. This phase
is a classical counterpart of the quantum MDD phase [29]. The quantum MDD corresponds
to the electrons occupying the energy levels with the subsequent angular momentum quantum
numbers. The electron charge density of the MDD takes on the maximum value allowed by
the Pauli exclusion principle and is squeezed around the centre of the quantum dot. In higher
magnetic fields the MDD breaks down due to the rapidly growing interelectron repulsion which
leads to the formation of a Wigner molecule with an island-like charge density distribution. The
separation of the centres of electron localization is the classical analogue of the MDD decay.
This effect appears abruptly at a certain magnetic field (cf figure 3). The breakdown of the MDD
is predicted by the quantum calculations [9, 10] to occur at a higher magnetic field than that
obtained in the present classical model, since the classical approach does not take into account
the exchange interaction. The exchange interaction partly compensates the electron–electron
Coulomb repulsion, but—due to its short range—disappears when the electron wavefunctions
cease to overlap. In this way the exchange interaction stabilizes the MDD at the magnetic
fields for which the classical model already predicts separation of the electrons.

In the infinite magnetic field limit, the present classical approach and the quantum Hartree–
Fock method [9, 10] reproduce the same limit value of the equilibrium distance, which is
characteristic for the point charge system. Figure 3 shows that for finite magnetic field, i.e.,
for B � 15 T, the optimum distances between the centres of localization of the Gaussian
charge density distribution, obtained from both the classical and the Hartree–Fock quantum
calculations, have already become identical. This means that—in the high magnetic field
regime—the Hartree–Fock results for the charge density distribution can be obtained from the
present classical calculations.

The distance between the centres of electron localization is related to the average value of
the electron–electron distance 〈r12〉. In figure 3 we have compared the classical value of this
quantity obtained by the present approach with the value obtained by the exact diagonalization
of the two-electron Schrödinger equation (dashed curve in figure 3). The problem of two
electrons can be separated into the equation for the centre-of-mass motion, which possesses an
analytical solution, and the relative motion eigenproblem [12, 34]. The latter has been solved
by a one-dimensional finite difference method. The quantum average value of the electron–
electron distance exhibits cusps related to the stepwise increase of the angular momentum
induced by the external magnetic field [8]. The classical value of the electron–electron distance
is a smooth function decreasing slowly with the increasing magnetic field. The classical
distance 〈r12〉 provides an approximate upper bound for the quantum average value. In the
infinite magnetic field limit, all the distances presented in figure 3 tend to the equilibrium
distance between the classical point charges.
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The inset of figure 3 shows the charge density contours obtained with the present classical
approach. Plot (a) for B = 1.5 T corresponds to the classical counterpart of the MDD, for
which the electrons are localized at the origin. In plot (b) (for B = 2.5 T) the centres of
electron localization become separated; the charge density distribution loses its cylindrical
symmetry and is elliptically deformed. Plots (c) and (d) show the distinct separation of the
electron charges characteristic of the Wigner molecule.

The system of six point charges possesses two stable isomers, which are close in
energy [18–20]. The lowest energy isomer corresponds to the configuration with one electron
situated at the centre and five others forming a pentagon surrounding it. In the metastable isomer
the electrons form a hexagon. Generally, in the equilibrium configurations, the electrons form
concentric rings [18, 19]. In the present paper we label the isomer of the Wigner molecule
giving the numbers of electrons in the subsequent rings starting from the innermost one. For
example, for the system of six point charges the lowest energy isomer is denoted by 1–5 and
the metastable isomer by 0–6. Figure 4 depicts the energy difference of two six-electron
isomers as a function of the external magnetic field. In contrast to the case for the point charge
system, in the present model with the spread-out charge distribution the 0–6 isomer possesses
a lower energy than the 1–5 isomer for B < 3.53 T. For higher magnetic fields the 1–5 isomer
becomes the most stable. Figure 4 shows that the energy difference passes through a maximum
for B = 9 T and then decreases toward 
E = 0.444 meV, which corresponds to the point
charge system.

In the magnetic field regime above the MDD breakdown, the interaction between the
nearest neighbours in the Wigner molecule is stronger than the interaction between the point
charges (cf figure 1), which changes the shape of the lowest energy configuration in comparison
to that of the point charge system in finite magnetic fields. The system of spread-out charges
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tends to minimize the number of nearest neighbours. Therefore, after the MDD breakdown,
the lowest energy isomer corresponds to the centres of electron localization located on a single
ring. In this configuration, the number of nearest neighbours is minimal but also the distances
between them are smaller than in the other metastable configurations. The small distances
become energetically less favourable for higher magnetic fields, for which the electrostatic
interaction between the Gaussian charge densities tends to the Coulomb interaction (cf figure 1).
This modification of the interaction triggers the transitions between the different configurations
of the Wigner molecule (cf figure 4).

Figure 5 shows the results for the nine-electron system. After the MDD breakdown (at
B = 0.75 T), the 0–9 isomer is the most stable one. This is the only stable nine-electron isomer
in the low magnetic field regime. The other metastable isomers, i.e., 1–8 and 2–7, appear at
B = 2.15 and 2.8 T and become the most stable at B = 2.2 and 3.55 T, respectively. The
inset of figure 5 depicts the charge density contours for the most stable nine-electron isomers.
We note that the 0–9 isomer for B = 2.1 T exhibits nearly perfect circular symmetry with the
minimum of the charge density located at the centre.

We have obtained similar transformations of the lowest energy isomers for all the Wigner
molecules consisting of more than five electrons. The present results are summarized in
figure 6, which shows the phase diagram for the Wigner molecules with N = 2, . . . , 20 as a
function of the external magnetic field. We see that the magnetic field which induces the MDD
breakdown decreases with the increasing number of electrons,which is related to the increasing
contribution of the electron–electron interaction. For N = 2, . . . , 5 the only transformation of
the lowest energy configuration is related to the MDD breakdown. For the point charge systems
with N = 6, 7, and 8 the lowest energy configurations are composed of two rings each with
one electron in the centre and the others forming polygons around it [18, 19]. Figure 6 shows



1434 T Prus et al

2

4

6

B
[T

]

N
124 8 16 20

MDD

0-x

1-x

2-x

3-x

4-x

5-x
6-x

1-6-x

1-7-x

Figure 6. A phase diagram showing the lowest energy isomers of the Wigner molecules as a
function of magnetic field B and number of electrons N . The number of electrons on the outermost
ring is denoted by x . The subsequent grey and white areas correspond to the same number of
electrons on the inner ring (the only exception of the 1–5–10 isomer is given explicitly). �: the
lowest energy isomer 1–6–12 of the 19-electron Wigner molecule is created at B = 10.5 T.

that—in the Wigner molecules with the spread-out charge density—the other stable isomers
are obtained for N = 6, 7, and 8 just after the MDD breakdown. These isomers consist
of a single ring. For N = 9, . . . , 15 the point charge systems in equilibrium are composed
of two rings with 2, 3, 4, or 5 electrons on the inner ring [19]. For the Gaussian charge
density the electrons enter the central ring one by one as the external magnetic field increases.
Similar effects appear for larger numbers of electrons, i.e., for N = 16, . . . , 20, which—in
the high magnetic field limit—produce three-ring isomers each with a single electron located
at the centre. The phase diagram presented in figure 6 exhibits a clear regularity in both the
sequence of the lowest energy isomers and the magnetic fields which induce the equivalent
transformations for the different numbers of electrons. In particular, figure 6 shows that the
magnetic field which induces the entrance of the subsequent electrons into the inner ring is a
monotonically decreasing function of N .

The classical phase diagram (figure 6) shows that—for N � 6—the intermediate phases
of the Wigner molecules appear in the magnetic field regime between the MDD breakdown and
the infinite field limit. The present prediction of the existence of the different classical Wigner
molecule phases is in agreement with the results of the quantum calculations [8, 9, 31, 32].
For N � 6 after the MDD breakdown the electrons prefer to occupy the outer rings and enter
the inner rings at higher magnetic fields. This property is also the most characteristic feature
of the phase diagram for the quantum Wigner molecules obtained by Szafran et al [9].

According to figure 2 the size of the Wigner molecule depends on the external magnetic
field. This dependence is related to the modification of the interaction potential by the external
magnetic field. We have found that not only is the size of the molecule modified, but also the
shape of some isomers is changed by the external magnetic field. The corresponding changes
of the size and shape are illustrated in figure 7 for the six-electron system.
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In the 0–6 isomer of the point charge system (cf figure 7 for B −→ ∞) the electrons
are situated on two concentric rings with different radii. In the system with the Gaussian
charge density distribution, this feature is also obtained at lower magnetic fields (cf the inset of
figure 7). The corresponding radii of the two rings are equal for B < 5.5 T. Then, the centres
of electron localization form a perfectly regular hegaxon. This hexagonal shape occurs in the
range of the magnetic field for which the 0–6 isomer is the most stable, i.e., B ∈ (0.93, 3.52)T.
Figure 7 shows that for B = 5.5 T the radii of the rings split as functions of the magnetic field.
At the magnetic field which corresponds to this splitting, the 1–5 isomer is already the most
stable (cf figure 4). The difference between the outer ring and inner ring radii is the largest for
B = 10 T. If the magnetic field increases further, both the radii approach the infinite magnetic
field limit values R1 = 30.3 nm and R2 = 28.9 nm. We see that for B = 10 T, i.e., for
the maximal value of the difference between the radii, the shape of 0–6 isomer significantly
differs from both the regular hegaxon and the stable point charge configuration. In the recent
work of Reusch and Grabert [5], the authors calculated the charge density for the 0–6 isomer
(cf figure 14(f) in [5]) by the unrestricted Hartree–Fock method. This plot [5] has been obtained
for a relatively low magnetic field, for which isomers 0–6 and 1–5 possess almost degenerate
energies. At this magnetic field, the centres of electron localization form a perfectly regular
hegaxon [5], which is in agreement with the present classical results (cf figure 7).

In figure 8 we plot the charge density for the 1–8 isomer of the nine-electron molecule
for different magnetic fields. For B = 5 T the electrons on the outer ring are situated at equal
distances from the central electron. However, for larger magnetic field the outer ring splits into
two concentric circles. The difference of the radii of these circles is maximal for B = 11.8 T
and converges to 0.4 nm if B −→ ∞.
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5 T 11.8 T 8

60 nm

Figure 8. Charge density contours for the nine-electron Wigner molecule isomer 1–8 for B = 5
and 11.8 T and for B −→ ∞. Dots show the centres of the electron localization and circles, the
corresponding rings.

Figures 7 and 8 show that the shape of certain isomers of the Wigner molecules strongly
depends on the external magnetic field. In a recent study of the quantum phase diagram for
Wigner molecules, Szafran et al [9, 10] assumed that the shape of the quantum isomer is
obtained by a uniform scaling of the corresponding classical configuration. The results of
figures 7 and 8 indicate that application of a non-uniform scaling is also possible, at least for
some isomers. In particular, for N = 6 the non-uniform scaling should lead to the extension
of the estimated [9] magnetic field regime in which the ground state corresponds to the 0–
6 configuration. This results from the present finding that the 1–5 isomer conserves its shape
on changing the magnetic field, but the shape of the 0–6 isomer is considerably modified
(cf figure 7).

In the infinite magnetic field limit the multicentre Hartree–Fock method reproduces the
lowest energy classical configurations of point charges [10]. The error of the energy estimate
obtained with a semiclassical charge distribution tends to zero at the infinite magnetic field
limit [38]. Taking into account the finite spread of the electron charges gives a reasonable
quantitative agreement of the present classical model and quantum calculations for finite
magnetic fields. For two-electron systems this agreement is reached for B � 10 T (cf figure 3).
For lower magnetic fields the present model is still qualitatively applicable for spin polarized
MDD and Wigner molecule states. However, it does not provide classical counterparts for
quantum ground states with ν > 1 appearing at magnetic fields below that for the MDD
formation.

4. Conclusions and summary

We have studied the classical features of the magnetic field-induced Wigner crystallization
in electron systems confined within quantum dots. The present study is performed in the
framework of classical physics and is based on the assumption that the charge density associated
with each electron can be identified with the charge density of the electron occupying the
lowest Landau level. This approach allows us to simulate a number of interesting effects
which were previously obtained in quantum calculations. In particular, we have obtained the
classical counterpart of the quantum MDD phase and the MDD breakdown into a Wigner
molecule. The semiclassical character of the quantum Wigner phases is a fairly well known
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feature. However, the present finding, that the classical model reproduces the MDD phase, is
an unexpected result.

Moreover, we have found the phase transitions between different isomers of the Wigner
molecules, which are in qualitative agreement with the previous quantum results. We have
shown that not only the high magnetic field behaviour, but also the other characteristic
properties of the quantum systems can be obtained within the present classical model.
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